K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

Bài 1

Trong 3 số tự nhiên tùy ý chọn ( a, b, c ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 3 số đó) mà tổng và hiệu của chúng chia hết cho 2.

Giải : Áp dụng quy tắc chẵn –lẻ

Xét các trường hợp:

·        a, b, c cùng chẵn --> đương nhiên chọn bất kỳ cặp nào cũng có

                                               tổng và cả hiệu của chúng là số chia hết cho 2

·        a, b, c cùng lẻ --> đương nhiên chọn bất kỳ cặp nào cũng có

                                          tổng và cả  hiệu của chúng là số chia hết cho 2

·        a, b, c có 1 cặp là số lẻ --> Hiệu và tổng của 2 số lẻ chia hết cho 2

·        a, b, c có 1 cặp là số chẵn --> Hiệu và tổng của 2 số chẵn chia hết cho 2

         Hai trường hợp đầu có 3 cặp số thỏa mãn đầu bài

        Hai trường hợp cuối có 1 cặp số thỏa mãn đầu bài

---> Vậy có ít nhât 1 cặp số mà tổng và hiệu của chúng chia hết cho 2 (ĐPCM)

Bài 2

Trong 4 số tự nhiên tùy ý chọn ( a, b, c, d ε N ), chứng minh rằng luôn có ít nhất 1 cặp số ( 2 số trong 4 số đó) mà tổng hoặc hiệu của chúng chia hết cho 5.

Giải :  Áp dụng qui tắc số dư

    Ta thấy phép chia cho 5 có thể được các số dư là  0, 1, 2, 3, 4,

Xét các trường hợp:

·        cả 4 số có số dư khác nhau (0,1,2,3);(0,2,3,4);(0,1 4,2); (0,4,2,3);(1,2,3,4)

     bao giờ cũng có ít nhất 1 cặp số có số dư là (1+4) hoặc (2+3)

                  --> Tổng 1 cặp số đó chia hết cho 5

    Với nhóm số có số dư (1,2,3,4) --> 2 cặp có tổng chia hết cho 5

·        cả 4 số có số dư trùng nhau --> 6 cặp từng đôi một có hiệu = 0

                                                                                        --> chia hết cho 5

·        2 cặp có số dư trùng nhau --> Hiệu của 2 cặp đó = 0 --> chia hết cho 5

·        1 cặp có số dư trùng nhau --> Hiệu của 1 cặp đó = 0 --> chia hết cho 5

Vậy ít nhất cũng chọn ra 1 cặp số mà tổng hoặc hiệu của chúng chia hết cho 5.

Bài 3

Chứng minh rằng trong 7 số tự nhiên bất kỳ tùy chọn, bao giờ cũng có 4 số mà tổng của chúng chia hết cho 4

Giải:

Đặt 7 số TN đó là A, B, C, D, E, F, G. Lấy kết quả của bài 1: Trong 3 số tự nhiên bất kỳ luôn có 2 số là số chẵn ( chia hết cho 2)

                A,  B,     C   Và   D, E, F    mỗi nhóm có 1 cặp chia hết cho 2

    

* Giả thử (A+B) =2 m  và  (D+E)=2n --> (A+B) + (C+D)= 2(m+n)

     

                     Còn 3 số   C     F    G  sẽ có 1 cặp chia hết cho 2

                                     ( C + F) = 2 p    Với m,n,p cúng là số tự nhiên

Trong 3 số m, n, p  luôn chọn được 2 số có tổng chia hết cho 2.

*Giả thử (m + n) =2 q  ( q là số TN) thì ta có

     (A+B) + (C+D)= 2(m+n) = 4q  ==> A+B+C+D chia hết cho 4 (ĐPCM)

Tương tự nếu chon các nhóm số khác ta cũng được 4 số trong 7 số bât kỳ trên chia hết cho 4

Chú ý: 

- Với bài toán chứng minh ta phải xét tất cả các trường hợp có thể xảy ra như bài 1 và bài 2; Với bài 3, tài liệu này chỉ nêu 1 trường hợp, còn các trường hợp khác nêu “CM tương tự”

- Bài 1 và bài 2 chú ý kết luận có sự khác nhau bởi 2 chữ  "và" với chữ "hoặc" !

k mik nha

20 tháng 10 2016
khi chia một số bất kì cho 3 thì số dư có thể là : 0;1;2.Cóa 3 số dư. theo nguyên lý Direchlet thì trong 9 số tự nhiên bất kì thì sẽ có ít nhất 3 số đồng dư khi chia cho 3. tổng của 3 số này là một số có tổng chia hết cho 3. Vậy : trong 9 số tự nhiên bất kì ta luôn chọn được 3 số có tổng chia hết cho 3.
6 tháng 6 2016

Để làm đc bài này bạn cần áp dụng phương pháp đồng dư,chắc chắn sẽ ra,

8 tháng 6 2016

full đi

21 tháng 9 2018

Giả sử không có hiệu hai số nào trong 16 số đó chia hết cho 15, chứng tỏ rằng không có hai số nào có cùng số dư khi chia cho 15.

vậy có 16 số dư khác nhau.

Mặt khác, một số chia cho 15 chỉ có thể dư 0, 1, ..., 14, có tối đa 15 số dư (mâu thuẫn).

Vậy có ít nhất 2 số trong đó có hiệu chia hết cho 15.