Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: N nằm trên đường trung trực của AB
nên NA=NB
b: Ta có:M nằm trên đường trung trực của AB
nên MA=MB
Xét ΔMAN và ΔMBN có
MA=MB
AN=BN
MN chung
Do đó: ΔMAN=ΔMBN
Suy ra: \(\widehat{MAN}=\widehat{MBN}=90^0\)
Bài 1:
Giải:
Xét \(\Delta ABC\left(\widehat{B}=90^o\right)\), áp dụng định lí Py-ta-go có:
\(AB^2+BC^2=AC^2\)
\(\Rightarrow10^2+5^2=AC^2\)
\(\Rightarrow AC^2=125\)
\(\Rightarrow AC=\sqrt{125}\left(dm\right)\)
Vậy \(AC=\sqrt{125}\left(dm\right)\)
Bài 2: sai đề
Ta có : OB = OD = \(\frac{BD}{2}=\frac{16}{2}=8\) ( 0 là trung điểm của BD )
OA = OC = \(\frac{AC}{2}=\frac{12}{2}=6\) ( O là trung điểm của AC )
+ \(\Delta AOB\) , có :
AB2 = OA2 + OB2
AB2 = 6 + 8
AB2 = 14
AB = \(\sqrt{14}\)
Ta có : BC = CD = AD = AB
=> BC = CD = AD = AB = \(\sqrt{14}\)