Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án là B.
• Kí hiệu số ghế là 1;2;3;4;5;6.
• Xếp trước 3 nam ngồi ở vị trí số lẻ và 3 nữ ngồi ở vị trí số chẳn và ngược lại
Ta có: 3!.3!.2! = 72
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án A
Phương pháp :
+) Chọn vị trí cho các bạn nam (hoặc nữ).
+) Hoán đổi các vị trí.
+) Sử dụng quy tắc nhân.
Cách giải : Chọn 1 vị trí trong 2 vị trí đối xứng có C 2 1 cách chọn, như vậy có ( C 2 1 ) 4 = 2 4 cách chọn ghế cho 4 bạn nam.
4 bạn nam này có thể đổi chỗ cho nhau nên có 4! cách xếp
Vậy có 4!4!24 cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ.
![](https://rs.olm.vn/images/avt/0.png?1311)
Để xác định số cách xếp ta phải làm theo các công đoạn như sau.
1. Chọn 3 nam từ 6 nam. Có cách.
2. Chọn 2 nữ từ 5 nữ. Có cách.
3. Xếp 5 bạn đã chọn vào bàn đầu theo những thứ tự khác nhau. có 5! Cách.
Từ đó ta có số cách xếp là
Chọn C.
![](https://rs.olm.vn/images/avt/0.png?1311)
c. Trường hợp 1: bạn nam ngồi đầu. khi dó 2 bạn nam xếp vào 2 chỗ ( số ghế 1 và 3), nữ xếp nốt vào hai chỗ còn lại ( ghế số 2 và 4), số cách xếp là 2!.2!=4
Trường hợp 2: bnạ nữ ngồi đầu. Tương tự có 4 cách xếp . Vậy theo quy tắc cộng số phần tử của biến cố N là 4+4=8
Chọn C
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
Ta chọn 2 bạn nữ trong 3 bạn để xếp vào vị trí 1 và 2 : C23
4 vị trí còn lại chỉ việc xếp vào 4 chỗ đã định sẵn, không phải chọn: A44
Vậy có tất cả : C32+A44=27 cách