Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)
\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
Dấu = khi \(x=\sqrt{\frac{3}{2}}\)
Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)
Bài 1:
ta có: C=\(\dfrac{x}{1-x}+\dfrac{5}{x}=\dfrac{x}{1-x}+\dfrac{5-5x+5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+\dfrac{5x}{x}=\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}+5\)
Vì 0<x<1==> \(\dfrac{x}{1-x}>0,\dfrac{5.\left(1-x\right)}{x}>0\)
Asp dụng BĐT coossi cho 2 số dg ta đc
\(\dfrac{x}{1-x}+\dfrac{5.\left(1-x\right)}{x}>=2.\sqrt{\dfrac{x}{1-x}.\dfrac{5.\left(1-x\right)}{x}}\)=2\(\sqrt{5}\)
==> C >= 2\(\sqrt{5}+5\)
Dấu ''='' xảy ra <=>\(\dfrac{x}{1-x}=\dfrac{5.\left(1-x\right)}{x}< =>x^{2^{ }}=5.\left(1-x\right)^2\)
<=> x=\(\dfrac{5-\sqrt{5}}{4}\)
Vậy..............
bài 2 :
ta có A= -x+2.\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)
= [ (x-3) + 2\(\sqrt{\left(x-3\right).\left(1-2x\right)}\)+( 1-2x)] +2
= ( \(\sqrt{x-3}+\sqrt{1-2x}\))2+2
Nhận thấy( \(\sqrt{x-3}+\sqrt{1-2x}\))2>= 0
==> A >= 2
dấu ''='' xáy ra <=>( \(\sqrt{x-3}+\sqrt{1-2x}\))2=0
<=> \([^{x=3}_{x=\dfrac{1}{2}}\)
vậy..............
Câu a đề hơi sai nha bạn, nên mình chỉ giải câu b thoi
Áp dụng AM-GM cho các bộ 3 số dương (x,y,z) và (1/x,1/y,1/z):
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)
\(\Rightarrow P\ge6\sqrt[3]{xyz}+\frac{3}{\sqrt[3]{xyz}}\ge2\sqrt{6\sqrt[3]{xyz}.\frac{3}{\sqrt[3]{xyz}}}=6\sqrt{2}\)(BĐT Cô-si)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{2}}\)( thỏa x,y,z thuộc (0;1))
a) Đặt \(\sqrt{x}=a\) (a >/0, a khác +-1)
Ta có: \(Q=\dfrac{a^2+a+1}{a^2+1}:\left(\dfrac{1}{a-1}-\dfrac{2a}{a^3+a-a^2-1}\right)\)
\(=\dfrac{a^2+a+1}{a^2+1}:\dfrac{a^2+1-2a}{\left(a^2+1\right)\left(a-1\right)}\)
\(=\dfrac{a^2+a+1}{a^2+1}\cdot\dfrac{\left(a^2+1\right)\left(a-1\right)}{\left(a-1\right)^2}\)
\(=\dfrac{a^2+a+1}{a-1}\)
\(\Rightarrow Q=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)
b) \(Q>1\Leftrightarrow x+\sqrt{x}+1>\sqrt{x}-1\Leftrightarrow\sqrt{x}+2>0\) (luôn đúng)
=> Q > 0 với mọi x >/0, x khác +-1
a) \(P=\left(\dfrac{2}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{2}{\sqrt{1-a^2}}+1\right)\)
\(=\dfrac{2+\sqrt{1+a^2}}{\sqrt{1+a}}\cdot\dfrac{\sqrt{1-a^2}}{2+\sqrt{1-a^2}}=\sqrt{1-a}\)
b) \(a=\dfrac{24}{49}\Rightarrow P=\sqrt{1-\dfrac{24}{49}}=\sqrt{\dfrac{25}{49}}=\dfrac{5}{7}\)
c) \(P=2\Leftrightarrow\sqrt{1-a}=2\Leftrightarrow1-a=4\Leftrightarrow a=-3\left(L\right)\)
kl;...