Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(0\le x,y,z\le1\). CMR:
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Do \(0\le x,y,z\le1\)\(\Rightarrow x\ge x^2;y\ge y^2;z\ge z^2\)
\(\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\Rightarrow xz-x-z+1\ge0\Rightarrow xz+y+1\ge x+y+z\ge x^2+y^2+z^2\)
\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{x}{x^2+y^2+z^2}\)
Tương tự rồi cộng từng vế, ta có:
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{3}{x+y+z}\)
=> ĐPCM
Bạn ghi sai đề rồi nhé! Nếu ta lần lượt thay số vào các biến \(x,y,z\) ở vế trái của bất đẳng thức trên (chẳng hạng như \(\frac{1}{3}\)) kết hợp với chú ý rằng \(x=y=z\) (sẽ được chứng minh ở các bước sau này), khi đó kết quả sẽ cho ra khác, tức là \(\frac{3}{\sqrt{2}}\) (vô lý!). Đó là lý do mình phải 'viết lại' đề cộng với một chút chỉnh sửa hợp lý về phương diện toán học. Hmmm, vất vả vật lộn với bài này quá nya. \(3\) \(s\) đi!
Đề: Cho ba số thực dương \(x,y,z\) thỏa mãn \(x+y+z=1\)
Chứng minh rằng: \(\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{yz}{x+yz}}+\sqrt{\frac{xz}{y+yz}}\le\frac{3}{2}\) \(\left(\text{*}\right)\)
Lời giải:
Từ giả thiết đã cho ở trên, ta dễ dàng chứng minh được \(1>x,y,z>0\) với mọi \(x,y,z\in R^+\)
\(\Rightarrow\) \(1-x>0;\) \(1-y>0;\) \(1-z>0\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) cho hai số không âm với chú ý rằng \(x+y+z=1\) (theo giả thiết), ta có:
\(\sqrt{\frac{xy}{z+xy}}=\sqrt{\frac{xy}{1-x-y+xy}}=\sqrt{\frac{xy}{\left(1-x\right)\left(1-y\right)}}\le\frac{1}{2}\left(\frac{x}{1-y}+\frac{y}{1-x}\right)\) \(\left(1\right)\)
Hoàn toàn tương tự với vòng hoán vị \(y\) \(\rightarrow\) \(z\) \(\rightarrow\) \(x\), ta chứng minh được:
\(\sqrt{\frac{yz}{x+yz}}\le\frac{1}{2}\left(\frac{y}{1-z}+\frac{z}{1-y}\right)\) \(\left(2\right)\) và \(\sqrt{\frac{xz}{y+xz}}\le\frac{1}{2}\left(\frac{z}{1-x}+\frac{x}{1-z}\right)\) \(\left(3\right)\)
Cộng từng vế các bất đẳng thức \(\left(1\right);\) \(\left(2\right);\) và \(\left(3\right),\) ta được:
\(VT\left(\text{*}\right)\le\frac{1}{2}\left[\left(\frac{y}{1-x}+\frac{z}{1-x}\right)+\left(\frac{x}{1-y}+\frac{z}{1-y}\right)+\left(\frac{x}{1-z}+\frac{y}{1-z}\right)\right]=\frac{1}{2}\left(1+1+1\right)=\frac{3}{2}=VP\left(\text{*}\right)\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(a=b=c=\frac{1}{3}\)
\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\)
\(\le\frac{1}{2\sqrt{x^2yz}}+\frac{1}{2\sqrt{y^2xz}}+\frac{1}{2\sqrt{z^2xy}}=\frac{\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}}{2\sqrt{xyz}}\)
\(=\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\le\frac{\frac{x+y+x+z+x+y}{2}}{2xyz}=\frac{x+y+z}{2xyz}\)
Dấu '=' xảy ra <=> x=y=z
\(Do\)\(x;y\le1\Rightarrow x\ge xy\Rightarrow x-xy\ge0\)
Tương tự cộng vào đc ... >=0
Xét \(\left(1-x\right)\left(1-y\right)\left(1-z\right)\ge0\)
\(\Leftrightarrow1-\left(x+y+x\right)+\left(xy+yz+zx\right)-xyz\ge0\)
\(\Leftrightarrow x+y+z-xy-yz-zx\le1-xyz\le1\)
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{x}{1+y+xz}=\frac{x\left(x^2+y+\frac{z}{x}\right)}{\left(1+y+xz\right)\left(x^2+y+\frac{z}{x}\right)}\le\frac{x^3+xy+z}{\left(x+y+z\right)^2}\)
\(\le\frac{x+y+z}{\left(x+y+z\right)}=\frac{1}{x+y+z}\)
Tương tự ta cũng có: \(\frac{y}{1+z+xy}\le\frac{1}{x+y+z};\frac{z}{1+x+yz}\le\frac{1}{x+y+z}\)
Cộng theo vế ta có: \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{1+1+1}{x+y+z}=\frac{3}{x+y+z}\)
Vì \(0\le x,y,z\le1\)
\(\Rightarrow xy\le y\)
\(x^2\le1\)
\(\Rightarrow x^2+xy+xz\le xz+y+1\)
\(\Leftrightarrow x\left(x+y+z\right)\le1+y+xz\)
\(\Leftrightarrow\)\(\frac{x}{1+y+xz}\le\frac{1}{x+y+z}\)
CMTT : các vế khác cug vậy
cộng các vế vào là đc
\(0\le x;y;z\le1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow xy-x-y+1\ge0\)
\(\Rightarrow xy+1\ge x+y\)
Tương tự ta chứng minh được \(xz+1\ge x+z\)và \(yz+1\ge y+z\)
\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{1}{x+y+z}\)(\(x\le1\))
\(\Rightarrow\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\le\frac{1}{x+y+z}\)(\(y\le1\))
\(\Rightarrow\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)\(z\le1\))
\(\Rightarrow\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)(đpcm)