\(0\le x,y,z\le1\)chứng minh rằng \(x+y^2+z^3-xy-yz-zx\le1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

\(0\le x,y,z\le1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\)

Tương tự:

\(yz+1\ge y+z;zx+1\ge z+x\)

Khi đó

\(LHS\le\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\le\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\)

Không chắc nha !

NV
15 tháng 4 2019

\(VT=\sum\frac{x}{x+\sqrt{\left(xy+xz+yz\right)x+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\sum\frac{x}{x+\sqrt{\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(\sqrt{z}^2+\sqrt{x}^2\right)}}\)

\(\Rightarrow VT\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{yz}\right)^2}}=\sum\frac{x}{x+\sqrt{xz}+\sqrt{yz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

18 tháng 7 2020

Ta viết lại bất đẳng thức cần chứng minh thành: \(\frac{1}{\sqrt{xy}-4}+\frac{1}{\sqrt{yz}-4}+\frac{1}{\sqrt{zx}-4}\ge-1\)(*)

Theo BĐT Cauchy, ta có: \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z\)

Mà ta có: \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\Rightarrow x+y+z\le3\)nên \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)

Theo BĐT Bunyakovsky dạng phân thức: \(\frac{1}{\sqrt{xy}-4}+\frac{1}{\sqrt{yz}-4}+\frac{1}{\sqrt{zx}-4}\)\(\ge\frac{9}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}-12}\ge\frac{9}{3-12}=-1\)

Suy ra (*) đúng

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi x = y = z = 1

18 tháng 7 2020

Ine CTV

dễ thấy \(x,y,z< \sqrt{3}\)\(\Rightarrow\)\(\sqrt{xy}-4< 0\); ... 

cauchy-schwarz chỉ dùng cho mẫu dương nha em, bài này lúc trước anh cũng lam sai, noi trước để đừng lục lại :D

16 tháng 3 2018

Đề bài thiếu điều kiện rồi :")))

thêm điều kiện đi rồi giải cho

28 tháng 3 2018

x+y+z=3

29 tháng 6 2016

Áp dụng B.C.S ta có:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự cộng lại ta có dpcm.

Dấu = khi x=y=z=1

29 tháng 6 2016

chờ lát tui làm cho

25 tháng 9 2019

Đã tìm ra lời giải:

gt \(\Rightarrow\left(xy+yz+zx\right)^2=\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow xy+yz+zx\ge3\)

Áp dụng bđt Bunhiacopxki:

\(\frac{1}{\left(x^2+y+1\right)\left(1+y+z^2\right)}\le\frac{1}{\left(x+y+z\right)^2}\Rightarrow\frac{1}{x^2+y+1}\le\frac{1+y+z^2}{\left(x+y+z\right)^2}\)

Tương tự rồi cộng lại, ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)+\left(x+y+z\right)+3}{\left(x+y+z\right)^2}\)

\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)+\left(xy+yz+zx\right)+3}{\left(x+y+z\right)^2}\)

\(=1+\frac{-\left(xy+yz+zx\right)+3}{\left(xy+yz+zx\right)^2}\le1+\frac{-3+3}{3^2}=1\)

Dấu đẳng thức xảy ra khi x = y = z = 1

20 tháng 2 2020

Sửa đề VP là \(\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\).

Tham khảo:[TOPIC] ÔN THI BẤT ĐẲNG THỨC $\boxed{\text{THPT CHUYÊN VÀ HSG TỈNH}}$ NĂM HỌC 2019-2020 - Trang 2 - Bất đẳng thức và cực trị - Diễn đàn Toán học