\(\le\) a \(\le\) b \(\le\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2017

mỗi web đăng 1 lần thui nhé nà Câu hỏi của Kim Hue Truong - Toán lớp 9 - Học toán với OnlineMath

13 tháng 6 2017

bài này điểm rơi hơi thộn, mò được ngay thì hơi khó :))

Áp dụng BĐT AM-GM ta có:

\(b^2\left(c-b\right)=\frac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\frac{1}{2}\left(\frac{b+b-2c-2b}{3}\right)^3=\frac{4c^3}{27}\)

Và \(a^2\left(b-c\right)\le0\). Khi đó 

\(Q\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2-\frac{23}{27}c^3=c^2\left(1-\frac{23}{27}\cdot c\right)\)

\(=\frac{54^2}{23^2}c^2\left(1-\frac{23}{27}c\right)\le\frac{1}{3^3}\cdot\frac{54^2}{23^2}=\frac{108}{529}\)

Đẳng thức xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)

13 tháng 6 2017

à đề là GTLN mới đúng nhé :))

8 tháng 8 2017

Theo đề bài ta có:

\(\hept{\begin{cases}-1\le a\le2\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2-a-2\le0\\-1\le b\le2\Rightarrow\left(b+1\right)\left(b-2\right)\le0\Rightarrow b^2-b-2\le0\\-1\le c\le2\Rightarrow\left(c+1\right)\left(c-2\right)\le0\Rightarrow c^2-c-2\le0\end{cases}\Rightarrow}\)\(a^2+b^2+c^2\ge\left(a+b+c\right)+6=6\)

8 tháng 8 2017

Ko mất tính tổng quát giả sử \(a\ge b\ge c\)

Khi đó \(f\left(x\right)=a^2\) là hàm lồi trên \(\left[-1;2\right]\) và \(\left(-1;-1;2\right)›\left(a;b;c\right)\)

Áp dụng BĐT Karamata ta có:

\(6=\left(-1\right)^2+\left(-1\right)^2+2^2\ge a^2+b^2+c^2\)

Xảy ra khi a=b=-1;c=2

29 tháng 9 2018

Trả lời:

a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)

Ta có: a + b\(\ge\)\(2\sqrt{ab}\)

b+c\(\ge\)\(2\sqrt{bc}\)

c+a\(\ge\)\(2\sqrt{ca}\)

\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)

b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)

Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b

\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab

CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab

\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab

= 2(a2+b2)+2ab =6(đpcm)

c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a

Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)

\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)

\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)

Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc

\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc

\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)

Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc

\(\Leftrightarrow\) 1 \(\ge\) 8abc

\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)

Từ (1),(3) kết hợp với (2)

\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)

8 tháng 5 2019

Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)

\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)

\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)

Nhân theo vế => ddpcm "=" khi a=b=c

8 tháng 5 2019

Câu hỏi dài nên mỗi ý mk làm thành 1 câu nha

20 tháng 5 2016

Áp dụng bất đẳng thức : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Có thể chứng minh bằng biến đổi tương đương)

được: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(1)

Thay \(a+b=2-c\)và \(a^2+b^2=2-c^2\)vào (1) được: 

\(2\left(2-c^2\right)\ge\left(2-c\right)^2\Leftrightarrow4-2c^2\ge4-4c+c^2\Leftrightarrow3c^2-4c\le0\)

Giải ra được \(0\le c\le\frac{4}{3}\) 

Tương tự với a,b  ta suy ra được điều phải chứng minh.

2 tháng 6 2017

\(f\left(x\right)=ax^2+bx+c=>\hept{\begin{cases}f\left(1\right)=a+b+c\\f\left(0\right)=c\\f\left(-1\right)=a-b+c\end{cases}.}\)

xét các Th

Th1)a,b,c cùng dấu :

=>/a/+/b/+/c/=/a+b+c/=/f(x)/<=1

Th2)a khác dấu với b,c

=>/a/+/b/+/c/=/-a+b+c/=/2f(0)-f(-1)/=2/f(0)/+/f(-1)/<=3

th3)b khác dấu với a,c

=>/a/+/b/+/c/=/a-b+c/=/f(-1)/<=1

th4) c khác dấu với a,b

=>/a/+/b/+/c/=/a+b-c/=/f(1)-2f(0)/=/f(1)/+2/f(0)/<=3

vậy /a/+/b/+/c/<=3

dấu = xảy ra khi ...