\(\left(b+c\right).\left(\dfrac{1}{b}+\dfrac{1}{c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

CM:$(b+c)(\frac{1}{b}+\frac{1}{c})< \frac{(a+d)^{2}}{ad}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

13 tháng 12 2018

Ta có: \(\left(1-a\right)\left(1-b\right)=1-a-b+ab\)

-Vì \(a>0;b>0\) nên ab > 0

Suy ra: \(\left(1-a\right)\left(1-b\right)>1-a-b\) (*)

-Vì c < 1 nên 1-c > 0

Tương tự (*) => \(\left(1-a\right)\left(1-b\right)\left(1-c\right)>1-a-b-c\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>\left(1-a-b-c\right)\left(1-d\right)\)

\(d< 1\Rightarrow d-1>0\)

Vậy \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)>1-a-b-c-d\)

=> (đpcm)

                                                                         

14 tháng 12 2018

Đặt \(A=\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)\)

\(A=\left(1-a-b+ab\right)\left(1-c-d+cd\right)\)

\(A=1-c-d+cd-a+ac+ad-acd-b+bd-bcd+ab-abc-abd+abcd+bc\)

\(A=1-a-b-c-d+cd\left(1-a\right)+ac\left(1-b\right)+bc\left(1-d\right)+bd\left(1-c\right)+abcd\)

Có: 0<a,b,c,d<1

=> \(cd\left(1-a\right)>0;ac\left(1-b\right)>0;bc\left(1-d\right)>0;bd\left(1-c\right)>0;abcd>0\)

\(\Rightarrow A>A-cd\left(1-a\right)-ac\left(1-b\right)-bc\left(1-d\right)-bd\left(1-c\right)-abcd=1-a-b-c-d\)

                                                                                                                                        đpcm

14 tháng 8 2016

Bài 1:

Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)

\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)

Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc  \(-2< x< 2\)

Giải (2) được : 

\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại)  hoặc \(1< x^2< 10\)(nhận)

\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)

\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)

Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\)\(\sqrt{7}< x< \sqrt{10}\)\(-\sqrt{10}< x< -\sqrt{7}\)

Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)

14 tháng 8 2016

Bài 1: 

Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)

Để tích trên < 0

\(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm

\(\Rightarrow x^2-10< 0\)\(x^2-7>0\)

\(\Rightarrow x^2< 10\)và \(x^2>7\)

\(\Rightarrow7< x^2< 10\)

\(\Rightarrow x^2=9\Rightarrow x=+;-3\)

5 tháng 8 2017

5) a) Ta có: \(a< b+c\)

\(\Rightarrow a^2< ab+ac\)

Tương tự: \(b^2< ba+bc\)

\(c^2< ca+cb\)

Cộng từng vế các BĐT vừa chứng minh, ta được đpcm

b) Ta có: \(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế các BĐT trên, ta được

\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)

Các biểu thức trong ngoặc vuông đều dương nên ta suy ra đpcm

AH
Akai Haruma
Giáo viên
5 tháng 8 2017

Bài 5:

a)

Ta có \(a^2+b^2+c^2<2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(a+c-b)+c(a+b-c)>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác nên

\(b+c-a,a+b-c,c+a-b>0\)

b) Áp dụng BĐT Am-Gm:

\((a+b-c)(b+c-a)\leq \left ( \frac{a+b-c+b+c-a}{2} \right )^2=b^2\)

\((a+b-c)(c+a-b)\leq \left (\frac{a+b-c+c+a-b}{2}\right)^2=a^2\)

\((b+c-a)(a+c-b)\leq \left ( \frac{b+c-a+a+c-b}{2} \right )^2=c^2\)

Nhân theo vế :

\(\Rightarrow [(a+b-c)(b+c-a)(c+a-b)]^2\leq a^2b^2c^2\)

\(\Rightarrow (a+b-c)(b+c-a)(c+a-b)\leq abc\)

Do đó ta có đpcm

c)

\(a^3+b^3+c^3+2abc< a^2(b+c)+b^2(c+a)+c^2(a+b)\)

\(\Leftrightarrow a(ab+ac-a^2-bc)+b(ab+bc-b^2-ac)+c(ca+cb-c^2)>0\)

\(\Leftrightarrow a(a-c)(b-a)+b(b-c)(a-b)+c^2(a+b-c)>0\)

\(\Leftrightarrow (a-b)(b-a)(b+a-c)+c^2(b+a-c)>0\)

\(\Leftrightarrow (b+a-c)[c^2-(a-b)^2]>0\)

Điều này hiển nhiên đúng vì $a,b,c$ là độ dài ba cạnh tam giác thì \(b+a>c, c>|a-b|\)

Do đó ta có đpcm.

13 tháng 6 2019

2. 

Từ giả thiết, ta có : 

\(\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}+1-\frac{1}{1+d}\)

\(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{b.c.d}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)

Tương tự, ta cũng có : 

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{c.d.a}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Nhân vế theo vế 4 BĐT vừa chững minh rồi rút gọn ta được :

\(abcd\le\frac{1}{81}\left(đpcm\right)\)

13 tháng 6 2019

2) Từ \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}\ge3.\)

\(\Rightarrow\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)

                  \(=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}.\)(BĐT AM-GM)

Tương tự :

\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)

\(\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)

\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}.\)

Từ đó suy ra:

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}.\frac{1}{1+d}\ge3.3.3.3\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)

\(\Leftrightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge\frac{81abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}.\)

\(\Leftrightarrow81abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)

Dấu '=' xảy ra khi \(a=b=c=d=\frac{1}{3}.\)

3)Ta có: \(\left(\sqrt{a}+\sqrt{b}\right)^8=\left[\left(\sqrt{a}+\sqrt{b}\right)^2\right]^4=\left(a+b+2\sqrt{ab}\right)^4.\)(1)

Với \(a,b\ge0\),áp dụng BĐT AM-GM cho (a+b) và (\(2\sqrt{ab}\)) ta được 

\(\left(a+b\right)+2\sqrt{ab}\ge2\sqrt{\left(a+b\right)2\sqrt{ab}}\)(2)

Từ (1) và (2) suy ra:

\(\left(\sqrt{a}+\sqrt{b}\right)^8\ge\left(2\sqrt{\left(a+b\right)2\sqrt{ab}}\right)^4\)

\(\Leftrightarrow\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2.\)

Dấu '=' xảy ra khi \(a+b=2\sqrt{ab}\Leftrightarrow a=b\)

1) Với \(x\le\frac{2}{3}\Rightarrow2-3x\ge0\)

Khi đó ,áp dụng bất đẳng thức AM-GM cho 2 số ta được:

\(\left(2-3x\right)+\frac{9}{2-3x}\ge2\sqrt{\left(2-3x\right)\frac{9}{2-3x}}=2.3=6\)

\(\Leftrightarrow2+\left(2-3x\right)+\frac{9}{2-3x}\ge2+6\)

\(\Leftrightarrow4-3x+\frac{9}{2-3x}\ge8\)

Dấu '=' xảy ra khi \(2-3x=\frac{9}{2-3x}\Leftrightarrow\left(2-3x\right)^2=9\Leftrightarrow2-3x=3\Leftrightarrow x=-\frac{1}{3}\)( vì 2-3x>0)

19 tháng 1 2018

1. a) 4( 2x + 3 ) - 3 ( 2 - 3x ) = 7

<=> 8x + 12 - 6 + 9x = 7

<=> 17x + 6 = 7

<=> 17x = 1

<=> x = 1/17

Vậy phương trình trên có nghiệm là x = 1/17

Chúc bạn học tốt!!!

19 tháng 1 2018

b) \(\dfrac{\left(x-1\right)^2}{3}+\dfrac{\left(x+3\right)^2}{6}=\dfrac{\left(x-2\right)\left(x+1\right)}{2}\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{3}+\dfrac{x^2+6x+9}{6}=\dfrac{x^2+x-2x-2}{2}\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{3.2}+\dfrac{x^2+6x+9}{6}=\dfrac{x^2-x-2}{2}\)

\(\Leftrightarrow\dfrac{\left(x^2-2x+1\right)2}{3.2}+\dfrac{x^2+6x+9}{6}=\dfrac{\left(x^2-x-2\right)3}{2.3}\)

\(\Leftrightarrow\dfrac{2x^2-4x+2}{6}+\dfrac{x^2+6+9}{6}=\dfrac{3x^2-3x-6}{6}\)

\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)

\(\Leftrightarrow3x^2+2x+11=3x^2-3x-6\)

\(\Leftrightarrow3x^2+2x-3x+3x=-6-11\)

\(\Leftrightarrow5x=-17\)

\(\Leftrightarrow x=\dfrac{-17}{5}\)

Vậy phương trình trên có nghiệm là \(x=\dfrac{-17}{5}\)

Chúc bạn học tốt!!!

30 tháng 12 2017

Bài 1, t nghĩ VP căn phải kéo dài hết

Áp dụng bđt bu nhi a, ta có 

\(\left(\sqrt{ab}+\sqrt{cd}\right)^2\le\left(a+d\right)\left(b+c\right)\Rightarrow\sqrt{ab}+\sqrt{cd}\le\sqrt{\left(a+d\right)\left(b+c\right)}\left(ĐPCM\right)\)

Bài 2, Áp dụng bài 1, ta có 

\(\left(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}\right)\le\left(a^2+b^2\right)\left[3a\left(a+2b\right)+3b\left(b+2a\right)\right]\)

\(\le2\left(3a^2+6ab+3b^2+6ab\right)=2\left[3\left(a^2+b^2\right)+12ab\right]\le2\left(6+12ab\right)\)

Áp dụng bđt cô si, ta có 

\(a^2+b^2\ge2ab\Rightarrow2\ge2ab\Rightarrow12\ge12ab\)

=>(...)^2<=36 => ...<=6 (ĐPcM)

dấu = xảy ra <=> a=b=1

^_^

23 tháng 3 2017

Nội suy Sửa đề làm cho bạn

Bài 1:

\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{2}+\dfrac{\left(c-a\right)^2}{2009}\)Nhân 2 chuyển Vế

\(2a^2+2b^2+2c^2-2ab-2bc-2ac-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2\left(c-a\right)^2}{2009}\right]\ge0\)Ghép Bình phướng

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2-\left[\dfrac{\left(a-b\right)^2}{13}+\dfrac{\left(b-c\right)^2}{3}+\dfrac{2.\left(c-a\right)^2}{2009}\right]\ge0\)Ghép nhân tử

\(\left[\left(a-b\right)^2\left(1-\dfrac{1}{13}\right)+\left(b-c\right)^2\left(1-\dfrac{1}{3}\right)+\left(c-a\right)^2\left(1-\dfrac{2}{2009}\right)\right]\ge0\)

Thu gọn có thể không cần

\(\left[\left(a-b\right)^2\left(\dfrac{12}{13}\right)+\left(b-c\right)^2\left(\dfrac{2}{3}\right)+\left(c-a\right)^2\left(\dfrac{207}{2009}\right)\right]\ge0\)VT là tổng 3 số không âm

Đẳng thức khi a=b=c

=> dpcm

23 tháng 3 2017

a=b=c sai rồi --> gấp thì đề cũng cho chuẩn

Câu 3: 

\(\Leftrightarrow3x^3-2x^2+6x^2-4x+9x-6>0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2+2x+3\right)>0\)

=>3x-2>0

=>x>2/3

Câu 1: 

a: \(A=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{x+1+2x-2}{\left(x^2-1\right)}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{3x-1}{x^2-1}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{3x^2-x-3x^2+3}{x\left(x^2-1\right)}\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{-\left(x-3\right)}{x\left(x+2\right)}\)

\(=x-2+\dfrac{6x-3-x^2+3x}{x\left(x+2\right)}\)

\(=x-2+\dfrac{-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x^2-4\right)-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-4x-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-x^2+5x-3}{x\left(x+2\right)}\)

b: TH1: \(\left\{{}\begin{matrix}x^3-x^2+5x-3>0\\x\left(x+2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x>0.63\end{matrix}\right.\Leftrightarrow0.63< x< 2\)

TH2: \(\left\{{}\begin{matrix}x^3-x^2+5x-3< 0\\x\left(x+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0.63\\\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x< 0.63\\x< -2\end{matrix}\right.\)