Chiếu một chùm ánh sáng trắng từ không khí vào khối thuỷ tinh với góc tới 8...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

Đáp án: C

Khi ánh sáng trắng chiếu xiên góc tới mặt phân cách giữa hai môi trường thì ánh sáng bị tán sắc

Do tia đỏ bị lệch ít nhất nên góc khúc xạ của nó là lớn nhất, từ định luật khúc xạ ánh sáng ta có: sinrđ/sini = nkk/nđ →sinrđ = 0,05989 → rđ = 36,790

Do tia tím bị lêch nhiều nhất nên góc khúc xạ của nó là nhở nhất, ta có: 

sinrt/sini = nkk/nt →sinrt = 0,05844 → rt = 35,760

Góc lớn nhất giữa các tia khúc xạ chính là góc hợp bởi tia đỏ và tia tím

∆r = rđ - rt = 1,030

4 tháng 6 2016

\(\frac{v_2}{v_1}=\frac{\lambda_2}{\lambda_1}\rightarrow\lambda_2=0,389\mu m\)

Đáp án C

27 tháng 1 2016

TDHOirrtd

Áp dụng định luật khúc xạ

\(\sin i =n_t. \sin r_t\)=>\(\sin r_t = \frac{0,8}{n_t}=> r_t \approx 36,56^0\)

\(\sin i =n_d. \sin r_d\) => \(\sin r_d = \frac{0,8}{n_d}=> r_d \approx 36,95^0\)

Bề rộng quang phổ tạo ra dưới đáy bể là

\(TD = HD-HT = OH.(\tan r_d-\tan r_t) \approx 1,257 mm. \)

28 tháng 11 2016

Câu 11 =]] tự làm đi

 

29 tháng 11 2016

Ta làm được rồi...

31 tháng 5 2017

Gia tốc cực đại: \(a_{max}=\omega^2.A=(2\pi.2,5)^2.0,05=12,3m/s^2\)

12 tháng 3 2018

Góc lệch ∆D giữa tia đỏ và tia tím :

∆D = (nt -nđ)A = (1,685 - 1,643).5° =.0,21° = 12,6'


Cho một lăng kính tam giác đều ABC, góc chiết quang là A. Chiết suất của chất làm lăng kính phụ thuộc vào bước sóng ánh sáng theo công thức \(n=1+\frac{b}{\text{λ}^2}\left(1\right)\)Trong đó \(a=1,26;b=7,555.10^{-14}m^2\) còn λ được đo bằng đơn vị mét. Chiếu một tia sáng trắng vào mặt bên AB của lăng kính sao cho thia tới nằm dưới pháp tuyến điểm tới. Tia tím có bước sóng...
Đọc tiếp

Cho một lăng kính tam giác đều ABC, góc chiết quang là A. Chiết suất của chất làm lăng kính phụ thuộc vào bước sóng ánh sáng theo công thức \(n=1+\frac{b}{\text{λ}^2}\left(1\right)\)

Trong đó \(a=1,26;b=7,555.10^{-14}m^2\) còn λ được đo bằng đơn vị mét. Chiếu một tia sáng trắng vào mặt bên AB của lăng kính sao cho thia tới nằm dưới pháp tuyến điểm tới. Tia tím có bước sóng  \(\text{λ}_t=0,4\text{μm}\) còn tia đới nằm dưới phép tuyến tại điểm tới. Tia tím có bước sóng \(\text{λ}_t=0,4\text{μm}\) , còn tia đỏ có bước sóng  \(\text{λ}_đ=0,7\text{μm}\) 

a/ Xác định gói tới của tia sáng trên  mặt AB sao cho tia tím co góc lệch là cực tiểu. Tính góc lệch đó.
b/ Bây giờ muốn tia đỏ đó có góc lệch cực thiểu thì quảy quay lăng kính quanh cạnh A một góc là bao nhiêu? theo chiều nào>
c/ Góc tới của tia sáng trên mặt ABC thỏa mãn điều kiện nào thì không có tia nào trong chùm sáng trắng đó la khỏi mặt AC.

 

1
27 tháng 1 2016

a/ Chiết suất của lăng kính đối với tia tím và đỏ tính theo (1) là:

\(n_t=1,7311\text{≈}\sqrt{3};\)\(n_đ=1,4142\text{≈}\sqrt{2}\)

Khi góc lệch của tia tím là cực tiểu thì: \(\iota'_1=\iota_2\Rightarrow r_1=r_2=\frac{A}{2}\)

và \(D_{min}=2\iota_1-A\) hay \(\iota_1=\frac{D_{tmin}+A}{2}\)

 

áp dụng công thức : \(\sin\iota_1=n\sin r_1\) ta được \(\sin D_{tmin}+A_2=n_t\sin\frac{A}{2}\)

 

Đối với tia tím \(n_t=\sqrt{3}\) và biết \(A=60^0\), ta được:

\(\sin D_{tmin}+A_2=60^0\Rightarrow D_{tmin}=60^0\)

Góc tới của tia sáng trắng ở mặt AB phải bằng:\(i_t=60^0\)

b/ Tương tự như vậy, muốn cho góc lệch của tia đỏ là cực tiểu thì:

\(\sin\frac{D_{dmin}+A}{2}=n_d\sin\frac{A}{2}\Rightarrow D_{dmin}=30^0\)

và góc tới của tia sáng trắng trên mặt AB là: \(i_đ=45^0\)

Như vậy phải giảm góc tới trên mặt AB một góc là :\(i_t-t_đ=15^0\), tức là phải quay lăng kính quanh cạnh A một góc  \(15^0\) ngược chiều kim đồng hồ.

c/Gọi   \(r_{0đ}\)và \(r_{0t}\)  là các góc giới hạn phản xạ toàn phần của tia đỏ và tia tím ta có:

\(\sin r_{0đ}=\frac{1}{n_d}=\frac{1}{\sqrt{2}}\Rightarrow r_{0đ}=45^0\)

\(\sin r_{0t}=\frac{1}{n_t}=\frac{1}{\sqrt{3}}\)=>r0t < r .Do đó muốn cho không có tia sáng nào ló ra khỏi mặt AC của lăng kính thì phải có: r2 \(\ge\)r0đ  \(\Rightarrow r_2\ge15^0\)

Hay \(\sin r_1\ge\sin\left(60^0-45^0\right)=0,2588\)

Biết \(\sin r_{1t}=\frac{\sin\iota}{n_t},\sin r_{1đ}=\frac{\sin\iota}{n_d}\); vì \(n_t\le n_đ\)nên suy ra \(r_{1t}\le\sin r_{1đ}\)(2)

Từ (1) và (2) ta thấy bất đẳng thức (1) được thõa mãn đối với mọi tia sáng, nghĩa là không có tia nào trong chùm sáng trắng ló ra khỏi mặt AC, nếu

\(\sin r_{1đ}\le0,2588\)hay \(\frac{\sin\iota}{n_đ}<0,2588\)

\(\Rightarrow\sin i\le0,2588.n_đ\)\(\Rightarrow\sin\le0,36\) .Suy ra góc tới:\(i\le21^06'\)

 

15 tháng 2 2016

Góc lệch của tia sáng khi qua lăng kính trong trường hợp góc chiết quang nhỏ:

\(D = (n-1).A = (1,65-1).8 = 5,2^0\)

Chọn C