Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Z_L=Z\omega=L.2\pi f_1\rightarrow L=\frac{36}{2\pi f_1}\)
\(Z_C=\frac{1}{C.2\pi f_1}\rightarrow C=\frac{1}{144.2\pi.f_1}\)
khi \(f=f_2\) cường độ dòng điện cùng pha với hiệu điện thế tức là xảy ra cộng hưởng
\(\omega^2_2=\frac{1}{LC}\Leftrightarrow\frac{36}{144.f^2_1}=\frac{1}{120^2}\rightarrow f_1=60Hz\)
Năng lượng của điện tử ở trạng thái dừng n: \(E_n =-\frac{13,6}{n^2}.(eV)\)
Hai vạch đầu tiên trong dãy Lai-man tương ứng với
vạch 1: Từ L (n = 2) về K (n = 1): \(hf_1 = E_2-E_1.(1)\)
vạch 2: Từ M (n = 3) về K (n = 1): \(hf_2 = E_3-E_1.(2)\)
Vạch đầu tiên trong dãy Ban-me ứng với
Từ M (n = 3) về L (n = 2): \(hf_{\alpha}= E_3-E_2.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta có : \(hf_2-hf_1 = hf_{\alpha}\)=> \(f_{\alpha}=f_2-f_1. \)
Năng lượng của nguyên tử ở trạng thái dừng \(n\):
\(E_n =-\frac{13,6}{n^2}.(eV)\)
Electron nhảy từ P (n=6) về K (n=1): \(hf_1 = E_6-E_1.(1)\)
Electron nhảy từ P (n=6) về L (n=2): \(hf_2 = E_6-E_2.(2)\)
Electron nhảy từ L (n=2) về K (n=1): \(hf_6 = E_2-E_1.(3)\)
Lấy (1) trừ đi (2), so sánh với (3) ta được : \(hf_1 -hf_2 = hf_3\)
=> \(f_3=f_1 -f_2.\)
Do \(U=U_1+U_2\)
Nên: u1 cùng pha với u2
\(\Rightarrow\tan\varphi_1=\tan\varphi_2\)
\(\Rightarrow\frac{Z_{L1}}{R_1}=\frac{Z_{L2}}{R_2}\)
\(\Rightarrow\frac{\omega L_1}{R_1}=\frac{\omega L_2}{R_2}\)
\(\Rightarrow\frac{L_1}{R_1}=\frac{L_2}{R_2}\)
Ta có:
\(hf_1=A+U_1e\)
\(hf_2=A+U_2e\)
Trừ 2 vế cho nhau ta được
\(h\left(f_2-f_1\right)=\left(U_2-U_1\right)e\)
\(U_2=U_1+\frac{h}{e}\left(f_2-f_1\right)\)
---->Đáp án B