Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Phát biểu “Mọi số tự nhiên n đều chia hết cho 3” là một phát biểu sai (vì 2 là số tự nhiên nhưng 2 không chia hết cho 3). Đây là một mệnh đề.
b) Phát biểu “Tồn tại số tự nhiên n đều chia hết cho 3” là một phát biểu đúng (chẳng số 3 là số tự nhiên và 3 chia hết cho 3). Đây là một mệnh đề.
bài 2)
theo đề ta có : \(\frac{2x+5}{x+2}=2+\frac{1}{x+2}\)
để 2x+5 chia hết x+2 thì :x+2 là Ư(1)={1;-1}
Xét TH:
x+2=1=>x=-1(loại)
x+2=-1=> x=-3 (loại)
vậy k có giá trị x nào là só tự nhiên để thỏa đề bài
Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi Q, ta được mệnh đề R có dạng: “Nếu P thì Q”
a. Đúng, vì $9\vdots 3$ nên $n\vdots 9\Rightarrow n\vdots 3$
b. Sai. Vì cho $n=2\vdots 2$ nhưng $2\not\vdots 4$
c. Đúng, theo định nghĩa tam giác cân
d. Sai. Hình thang cân là 1 phản ví dụ.
e.
Sai. Cho $m=-1; n=-2$ thì $m^2< n^2$
f.
Đúng, vì $a\vdots c, b\vdots c$ nên trong $ab$ có chứa nhân tử $c$
g.
Sai. Hình bình hành là hình thang có 2 cạnh bên bằng nhau nhưng không phải hình thang cân.
"n chia hết cho 3", với n là số tự nhiên. Đây là không phải là 1 mệnh đề vì không xác định được tính đúng sai của mệnh đề này (phụ thuộc vào biến n)
Gọi số tự nhiên cần tìm là n (n\(\in\)N; n\(\ne\)999)
Ta có: n chia 8 dư 7 => (n+1) chia hết cho 8
n chia 31 dư 28 => (n+3) chia hết cho 31
Ta có: ( n+ 1) + 64 chia hết cho 8=(n+3)+62 chia hết cho 31
Do đó (n+65) chia hết cho 31 và 8
Mà (31,8) = 1
=> n+65 chia hết cho 248
Vì n≤999 nên (n+65)≤1064
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn
\(\Rightarrow\)\(\frac{n+65}{243}=4\)
Ta có:n+65=243.4
n+65=972
n=972-65
n=907
Vậy n=907
Vậy số tự nhiên cần tìm là : 927
tim 2 so tu nhien lon nhat sao cho so do chia cho 7 du 4, chia cho 8 dư 7(có ai biết làm bài này ko, giúp mình với)