K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

Tham khảo :

Không có mô tả.

 

2 tháng 12 2016

Giải:

Gọi ba phần đó là a, b, c

a) Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 310

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{310}{10}=31\)

+) \(\frac{a}{2}=31\Rightarrow a=62\)

+) \(\frac{b}{3}=31\Rightarrow b=93\)

+) \(\frac{c}{5}=31\Rightarrow c=155\)

Vậy 3 phần đó là 62; 93; 155

b) Ta có: \(2a=3b=5c\) và a + b + c = 310

\(\Rightarrow\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}\)

\(\Rightarrow\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}=\frac{a+b+c}{15+10+6}=\frac{310}{31}=10\)

+) \(\frac{a}{15}=10\Rightarrow a=150\)

+) \(\frac{b}{10}=10\Rightarrow b=100\)

+) \(\frac{c}{6}=10\Rightarrow c=60\)

Vậy 3 phần đó là 150; 100; 60

21 tháng 11 2017

gọi 3 phần dc chia bởi số 310 lần lượt là x, y, z

a) theo đề bài ta có \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và X + Y + Z = 310

theo tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{310}{10}=31\)

\(\Rightarrow x=31.2=62\)

\(\Rightarrow y=31.3=93\)

\(\Rightarrow z=31.5=155\)

Zậy 3 phần dc chia bởi số 310 lần lượt là 62, 93, 155

b) theo đề bài ta có 2x = 3y = 5z và x + y + z = 310

\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

theo tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{15+10+6}=\dfrac{310}{31}=10\)

\(\Rightarrow x=15.10=150\)

\(\Rightarrow y=10.10=100\)

\(\Rightarrow z=6.10=60\)

Vậy 3 phần dc chia bởi số 310 lần lượt là 150, 100, 60

29 tháng 6 2019

a) Gọi ba phần của số 6200 là a, b, c. Từ giả thiết ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)\(a+b+c=6200\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)

\(\left\{{}\begin{matrix}\frac{a}{2}=620=>a=620.2=1240.\\\frac{b}{3}=620=>b=620.3=1860.\\\frac{c}{5}=620=>c=620.5=3100.\end{matrix}\right.\)

Vậy ba phần của số 6200 tỉ lệ thuận với 2, 3, 5 là: 1240; 1860; 3100.

b) Gọi ba phần của số 6200 là x, y, z. Từ giả thiết ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)\(x+y+z=6200\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)

\(\left\{{}\begin{matrix}\frac{x}{\frac{1}{2}}=6000=>x=6000.\frac{1}{2}=3000\\\frac{y}{\frac{1}{3}}=6000=>y=6000.\frac{1}{3}=2000\\\frac{z}{\frac{1}{5}}=6000=>z=6000.\frac{1}{5}=1200\end{matrix}\right.\)

Vậy ba phần của số 6200 tỉ lệ nghịch với 2, 3, 5 là 3000; 2000; 1200.

Chúc bạn học tốt!

29 tháng 6 2019

Gọi 3 phần đó lần lượt là a, b, c( 0<a,b,c<6200)

Vì 3 phần đó lần lượt tỉ lệ thuận với 2,3,5 nên ta có

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) Mà a+b+c =310

Áp dụng t/c dãy tỉ số bằng nhau

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{6200}{10}=620\)

Do đó:

\(\frac{a}{2}=620=>a=1240\)

\(\frac{b}{3}=620=>b=1860\)

\(\frac{c}{5}=620=>c=3100\)

Vậy ...

b,Gọi 3 phần đó lần lượt là a,b,c( 0<a,b,c<6200)

Vì 3 phần đó lần lượt TLN với 2,3,5 nên ta có

a/ \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)

Mà a+ b+c= 6200

Áp dụng tc ...

\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{6200}{\frac{31}{30}}=6000\)

Do đó:

\(\frac{a}{\frac{1}{2}}=6000=>a=3000\)

\(\frac{b}{\frac{1}{3}}=6000=>b=2000\)

\(\frac{c}{\frac{1}{5}}=6200=>c=1240\)

Vậy...

27 tháng 12 2016

a)Vì x;y;z tỉ lệ thuận với 2;3;5 nên x:y:z=2:3:5

x:|===|===|

y:|===|===|===|

z:|===|===|===|===|===|

62;93;155

27 tháng 12 2016

x=310:(2+3+5)*2=62

y=310:(2+3+5)*3=92

z=310-x-y=155

b)Vì x;y;z tỉ lệ ngịch với 2;3;5 nên 2x=3y=5z

=>\(\frac{x}{1:2}=\frac{y}{1:3}=\frac{z}{1:5}=\frac{x+y+z}{\left(1:2\right)+\left(1:3\right)+\left(1:5\right)}\)

=\(\frac{310}{31:30}\)=310*30/31=300

=>x=150;y=100;z=60