Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi x,y,z là 3 số theo thứ tự tỉ lệ thuận với 2,3,5
Ta có : \(x:y:z=2:3:5\) và x + y + z = 620
hay \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và x + y + z = 620
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{620}{10}=62\)
=> \(\hept{\begin{cases}\frac{x}{2}=62\\\frac{y}{3}=62\\\frac{z}{5}=62\end{cases}}\Rightarrow\hept{\begin{cases}x=124\\y=186\\z=310\end{cases}}\)
b) Gọi a,b,c là 3 số tỉ lệ nghịch với \(2,3,5\)
Ta có : \(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}\)và a + b + c = 620
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{1}{2}}=\frac{b}{\frac{1}{3}}=\frac{c}{\frac{1}{5}}=\frac{a+b+c}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{620}{\frac{31}{30}}=600\)
=> \(\hept{\begin{cases}\frac{a}{\frac{1}{2}}=600\\\frac{b}{\frac{1}{3}}=600\\\frac{c}{\frac{1}{5}}=600\end{cases}}\Rightarrow\hept{\begin{cases}a=300\\b=200\\c=120\end{cases}}\)
a) Gọi ba số là \(a;b;c\left(a;b;c\ne0\right)\). Vì tổng của 3 số là 620 \(\Leftrightarrow a+b+c=620\)
Vì ba số tỉ lệ thuận với \(2;3;5\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{620}{10}=62\). Từ đó ta có :
\(a=62.2=124\) \(b=64.3=192\) \(c=62.5=310\)
b) Gọi ba số là \(x;y;z\left(x;y;z\ne0\right)\). Vì tổng của 3 số là 620 \(\Leftrightarrow a+b+c=620\)
Vì ba số tỉ lệ nghịch với \(2;3;5\Rightarrow2x=3y=5z\Leftrightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\). Áp dụng t/c dãy tỉ số bằng nhau
Ta có \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{x+y+z}{\frac{15}{30}+\frac{10}{30}+\frac{6}{30}}=\frac{620}{\frac{31}{30}}=600\)
\(\Leftrightarrow x=620.\frac{1}{2}=310\) \(\Leftrightarrow y=620.\frac{1}{3}=\frac{620}{3}\) \(\Leftrightarrow z=620.\frac{1}{5}=124\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\)
Do đó: a=62; b=63; c=155
Gọi 3 phần là a,b,c(a,b,c>0)
a, Áp dụng tc dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{310}{10}=31\\ \Rightarrow\left\{{}\begin{matrix}a=62\\b=93\\c=155\end{matrix}\right.\)
b, Áp dụng tc dtsbn:
\(2a=3b=5c\Rightarrow\dfrac{2a}{30}=\dfrac{3b}{30}=\dfrac{5c}{30}\Rightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{6}=\dfrac{a+b+c}{15+10+6}=\dfrac{310}{31}=10\\ \Rightarrow\left\{{}\begin{matrix}a=150\\b=100\\c=60\end{matrix}\right.\)
gọi 3 phần của 480 là c,b,z
ta có: c/2= b/3= z/5 và c+b+Z=480
=)c+b+z/2+3+5=480/10=48
c/2=48=)48x2=96
b/3=48=)48x3=144
z/5=48=)48x5=240
b)tương tự
a: Gọi ba số cần tìm là a,b,c
Theo đề, ta có:a/2=b/3=c/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{480}{10}=48\)
Do đó: a=96; b=144; c=240
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{\dfrac{1}{5}+\dfrac{1}{4}+\dfrac{3}{10}}=\dfrac{480}{\dfrac{3}{4}}=640\)
Do đó: a=128; b=160; c=192
gọi 3 số chia ra là a;b;c
ta có : a/2=b/3=c/5
=> a+b+c/2+3+5 = a/2=b/3=c/5
=> 480/10=a/2=b/3=c/5
=> 48=a/2=b/3=c/5
=> a=96;b=144;c=240