Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các hạt nhân bền vững có năng lượng liên kết riêng lớn nhất cỡ 8,8 MeV/nuclôn ; đó là những hạt nhân có số khối trong khoảng 50 < A < 95.
\(W_{lkr}= \frac{W_{lk}}{A}\)
Năng lượng liên kết riêng của các hạt nhân lần lượt là 1,11 MeV; 0,7075 MeV; 8,7857 MeV; 7,6 MeV.
Hạt nhân kém bền vững nhất là \(_2^4He\).
Kí hiệu \(N_{01}\), \(N_{02}\) là số hạt ban đầu lần lượt của \(^{235}U\) và \(^{238}U\).
t = 0 Ban đầu t thời điểm cần xác định hiện nay t 1 2
Hiện nay \(t_2\): \(\frac{N_{1}}{N_{2}}=\frac{N_{01}2^{-\frac{t_2}{T_1}}}{N_{02}2^{-\frac{t_2}{T_2}}} =\frac{7}{1000}.(1)\)
Thời điểm \(t_1\):
\(\frac{N_1}{N_2}= \frac{N_{01}2^{-\frac{t_1}{T_1}}}{N_{02}2^{-\frac{t_1}{T_2}}} = \frac{3}{100}.(2)\)
Chia (1) cho (2) => \(\frac{2^{-\frac{t_2}{T_1}}.2^{-\frac{t_1}{T_2}}}{2^{-\frac{t_1}{T_1}}.2^{-\frac{t_2}{T_2}}}= \frac{7.100}{3.1000}= \frac{7}{30}.\)
Áp dụng \(\frac{1}{2^{-x}} =2^x. \)
=> \(2^{(t_2-t_1)(\frac{1}{T_2}-\frac{1}{T_1})} = \frac{7}{30}.\)
=> \(t_2-t_1 = \frac{T_1T_2}{T_1-T_2}\ln_2 (7/30)=1,74.10^{9}\).(năm) \(= 1,74 \)(tỉ năm).
Như vậy cách hiện nay 1,74 tỉ năm thì trong urani tự nhiên có tỉ lệ số hạt thỏa mãn như bài cho.
Tất cả các đáp án đều có sản phẩm là 1 hạt α và \(a\) hạt nhân X nên phương trình phản ứng hạt nhân là
\(_{92}^{238}U \rightarrow _{92}^{234}U+ _2^4He+ a_Z^AX\)
Áp dụng định luật bào toàn số khối và điện tích
\(238 = 234+ 4+ a.A=> a.A= 0=> A = 0 \)(do \(a>0\))
\(92 = 92+ 2 + a.Z=> a.Z = -2\). Chỉ có thể là a = 2 và z = -1.
Hạt nhân đó là \(_{-1}^0e\)
\(_1^1p + _3^7 Li \rightarrow 2_2^4He\) => X là Heli.
Áp dụng định luật bảo toàn động lượng trước và sau phản ứng
\(\overrightarrow P_{p} = \overrightarrow P_{He_1} + \overrightarrow P_{He_2}\) , do \( (\overrightarrow P_{Li} = \overrightarrow 0)\)
P P P He 1 He 2 p 60 o
Dựa vào hình vẽ ta có
\(P_p^2 + P_{He_1}^2 - 2P_pP_{He_1} \cos {60^o}= P_{He_2}^2\)
Mà \(P_{He_1} = P_{He_2}\)
=> \(P_p^2 - 2P_pP_{He} \cos {60^o}= 0\)
=> \(P_p^2 =2P_pP_{He} \cos {60^o}\)
=> \(P_p =P_{He} \)
=> \(m_pv_p=m_{He}v_{He} \)
=> \(\frac{v_p}{v_{He}} = 4.\)
\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)
Áp dụng định luật bảo toàn động lượng
PPαPLip
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{Li}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)
=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,58MeV\)
=> \(v = \sqrt{\frac{2.K_{Li}}{m_{Li}}} = \sqrt{\frac{2.3,58.10^6.1,6.10^{-19}}{6.1,66055.10^{-27}}} = 10,7.10^6 m/s.\)
\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)
Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)
=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)
=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)
Áp dụng định luật bảo toàn động lượng
P P P α α p Li
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)
Với \(P^2 = 2mK, m=A.\).
=> \(\alpha = 90^0.\)
Đáp án B