K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2021

Gọi số sản phẩm dự định là a (sản phẩm ) (a là số tự nhiên khác 0)

Vì theo dự định mỗi ngày sản xuất 50 sản phẩm nên số ngày theo dự định là \(\dfrac{a}{50}\)

Nhưng thực tế , đội đã sản xuất theeo được 30 sản phẩm do mỗi ngày vượt mức 10 sản phẩm (nghĩa là sản xuất 60 sản phẩm) , nên số ngày thực tế là \(\dfrac{a+30}{60}\)

Vì thực tế sớm hơn dự định 2 ngày nên ta có phương trình :

\(\dfrac{a}{50}=\dfrac{a+30}{60}+2\\ \Leftrightarrow6a=5\left(a+30+120\right)\\\Leftrightarrow a=750\left(t.m\right) \)

Vậy số sản phẩm dự định là 750 sản phẩm

4 tháng 4 2021

Bài 3:

Gọi số sản phẩm đội phải sản xuất theo kế hoạch là x( sản phẩm, x\(\in N\)*)

Thời gian đội sản xuất theo kế hoạch là: \(\dfrac{x}{50}\) (ngày)

Số ngày làm thực tế là: \(\dfrac{x+30}{50+10}=\dfrac{x+30}{60}\) (ngày)

Theo bài ra, ta có phương trình:

\(\dfrac{x}{50}-\dfrac{x+30}{60}=2\)

\(\Leftrightarrow\dfrac{60x-50\left(x+30\right)}{50.60}=2\)

\(\Leftrightarrow60x-50x-1500=6000\Leftrightarrow x=750\)(thoả mãn)

Vậy theo kế hoạch đội phải sản xuất 750 sản phẩm

40: Ta có: \(A=27x^3+8y^3-3x-2y\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2-1\right)\)

31 tháng 10 2021

3: \(\left(3x+5\right)\left(2x-7\right)\)

\(=6x^2-21x+10x-35\)

\(=6x^2-11x-35\)

4: \(\left(5x-2\right)\left(3x+4\right)\)

\(=15x^2+20x-6x-8\)

\(=15x^2+14x-8\)

31 tháng 10 2021

mik cần bài 1 ,2 ( câu 1,2)

 

28 tháng 4 2022

\(\dfrac{2x+2}{3}< 2+\dfrac{x-2}{2} \Leftrightarrow2\left(2x+2\right)< 12+3\left(x-2\right) \Leftrightarrow4x+4< 3x+6 \Leftrightarrow4x< 3x+2 \Leftrightarrow x< 2\)

10 tháng 12 2021

Bài 6:

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

29 tháng 11 2021

e đăng lại tr quên thêm ảnh kkk 

12 tháng 10 2020

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Cái này chuẩn CBS dạng đặc biệt với hai tử số bằng 1

Dấu "=" xảy ra khi \(a=b\)

13 tháng 10 2020

Cauchy đi mài ._.

Vì a, b > 0 nên áp dụng bđt Cauchy cho :

  • Bộ số a, b ta được :

\(a+b\ge2\sqrt{ab}\)

  • Bộ số 1/a, 1/b ta được :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=2\cdot\frac{\sqrt{1}}{\sqrt{ab}}=\frac{2}{\sqrt{ab}}\)

Nhân hai vế tương ứng ta có đpcm

Dấu "=" xảy ra <=> a = b 

28 tháng 8 2016

\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)

Vậy A > 0

28 tháng 8 2016

\(A=x^2+x+1\)

Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow x^2+1+1\ge1\)

Vậy: \(A>0\)