Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các phần quà em nhận được đến giừo là 11 thẻ cào và 5 chiếc cốc và 1 bình giữ nhiệt ạ
CẬP NHẬT: MỖI TÀI KHOẢN DỰ THI CHỈ NỘP 01 BÀI DỰ THI CHỈNH CHU, TOÀN DIỆN NHẤT CÁC EM NHÉ!
Thời gian nhận bài dự thi khá là lâu (khoảng 24 ngày), các bạn rủ bạn bè tham gia nữa nhé! Giải thưởng trên có thể chỉ là dự kiến, nếu có nhiều bài dự thi chất lượng thì có thể tăng giải thưởng thêm hi!
Đáp án b
Các hình màu xanh là phản chiếu của các hình máu cam trong gương.
Nhìn sơ sơ đoán là chọn B
Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh
Xu dùng để tích lũy mua VIP, mua vật phẩm trên shop OLM và shop HOC24 (sẽ ra mắt trong thời gian tới) các em nhé!
Cô ơi, cho em xin phép phản hồi 1 chút về web ạ!
Là từ nãy giờ, khi em đang thi đấu ở trong web, nó liên tục ghi bảng "Lỗi QLIB: undefined" và dừng tải câu hỏi, em đã load lại trang gần như rất nhiều lần, và internet nhà em cũng không có vấn đề gì cả ạ, nhưng mà đề ở trên đó vẫn không hiện lên ạ:((cái này lặp đi lặp lại 2, 3 lần rồi, vẫn không khắc phục được ạ! Em đã xem xét từ nãy giờ rất kĩ, nhưng không có vấn đề gì về phần của em ạ!Mong các thầy cô xử lý lỗi này để tránh trường hợp các bạn học sinh khác cũng vào thi sẽ gặp lỗi mạng, và không thể tiếp tục cuộc thi ạ! Đó là 1 số ý kiến riêng của em, mong mọi người sẽ khắc phục lỗi sớm hơn ạ!Cách khác nè Phương: (đây là phương pháp chỉ ra một giá trị rồi chứng minh các giá trị còn lại không thỏa mãn)
a/ Giải
+) Với n = 0 thì \(n^2+2n+12=12\) không là số chính phương.
+) Với n = 1 thì \(n^2+2n+12=15\) không là số chính phương.
+) Với n = 2 thì \(n^2+2n+12=20\) không là số chính phương.
+) Với n = 3 thì \(n^2+2n+12=27\) không là số chính phương.
+) Với n = 4 thì \(n^2+2n+12=36=6^2\) là số chính phương.
+) Với n > 4 thì \(n^2+2n+12\) không là số chính phương vì:
\(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\)
Thật vậy: \(\left(n+1\right)^2< n^2+2n+12\)
\(\Leftrightarrow n^2+2n+12-n^2-2n-1>0\)
\(\Leftrightarrow11>0\) (luôn đúng)
Do vậy \(\left(n+1\right)^2< n^2+2n+12\) (1)
C/m: \(n^2+\left(2n+12\right)< \left(n+2\right)^2\)
\(\Leftrightarrow n^2+4n+4-n^2-2n-12>0\)
\(\Leftrightarrow2n-8>0\) (luôn đúng do n > 4) (2)
Từ (1) và (2) suy ra với n > 4 thì \(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\) hay \(n^2+2n+12\) không là số chính phương.
Vậy 1 giá trị n = 4
b/ +)Với n = 0 thì \(n\left(n+3\right)=0\) là số chính phương
+) Với n = 1 thì \(n\left(n+3\right)=4\) là số chính phương
+) Với n > 1 thì \(n\left(n+3\right)\) không là số chính phương vì:
\(\left(n+1\right)^2< n\left(n+3\right)< \left(n+2\right)^2\)
Thật vậy: \(\left(n+1\right)^2< n\left(n+3\right)\Leftrightarrow n^2+3n-n^2-2n-1>0\)
\(\Leftrightarrow n-1>0\) (đúng với mọi n > 1) (1)
Ta sẽ c/m: \(n\left(n+3\right)< \left(n+2\right)^2\)
\(\Leftrightarrow n^2+4n+4-n^2-3n>0\)
\(\Leftrightarrow n+4>0\) (luôn đúng với mọi n > 0) (2)
Từ (1) và (2) suy ra với mọi n > 1 thì \(n\left(n+3\right)\) không là số chính phương.
Vậy n = 0;n = 1
1. Phạm Anh Sơn
2. Hoàng Thị Thu Phúc