K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

      \(\left(4+6+8+...+2012\right)\cdot\frac{1}{1000}\cdot\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)\)

\(\text{Số số hạng trong dãy }4+6+8+...+2012\text{ là : }\)

                     \(\left(2012-4\right)\text{ : }2+1=1005\left(\text{số hạng}\right)\text{ }\)

\(4+6+8+...+2012=\left(2012+4\right)\cdot1005\text{ : }2=1013040\)

\(\text{Quay lại bài toán , thay 4 + 6 + 8 + ... + 2012 = 1013040 ta có : }\)

                         \(1013040\cdot\frac{1}{1000}\cdot\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)\)

                     \(=\frac{1013040}{1}\cdot\frac{1}{1000}\cdot\left(\frac{6}{12}+\frac{9}{12}+\frac{10}{12}\right)\)

                     \(=\frac{1013040}{1000}\cdot\frac{25}{12}\)

                     \(=\frac{25326000}{12000}=2110,5\)  

Mik cx làm ra kết quả như thế nhưng điền vào violimpic lại sai

11 tháng 10 2015

=1013040.1/100.25/12

=21105

11 tháng 10 2015

Đặt A=4+6+8+...+2012

Số số hạng của dãy là: (2012-4)\(\div\)2+1=1005

Tổng A=(2012+4)\(\times\)1005\(\div\)2=1013040

\(\Rightarrow\)1013040\(\times\frac{1}{1000}\times\left(\frac{1}{2}+\frac{3}{4}+\frac{5}{6}\right)=\) 1013040\(\times\frac{1}{1000}\times\frac{25}{12}=\)\(\frac{4221}{2}\)=2110,5

21 tháng 8 2020

a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)

b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)

c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)

\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)

13 tháng 7 2019

#)Giải :

a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)

b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

\(P=1+\frac{1}{2}.\frac{\left(1+2\right).2}{2}+\frac{1}{3}.\frac{\left(3+1\right).3}{2}+...+\frac{1}{2012}.\frac{\left(2012+1\right).2012}{2}\)

\(=1+\frac{\left(1+2\right)}{2}+\frac{\left(1+3\right)}{2}+...+\frac{\left(1+2012\right)}{2}\)

\(=1+\frac{2011}{2}+\frac{\left(2012+2\right).2011}{2}=1+\frac{2011}{2}+2011.1007\)