K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

bạn giải đi bạn

27 tháng 10 2018

Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:

\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)

\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)

5 tháng 8 2017

\(3x=4y;2y=5z\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{2}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)

\(=\dfrac{2x+3y-5z}{40+45-30}=\dfrac{55}{55}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.20=20\\y=1.15=15\\z=1.6=6\end{matrix}\right.\)

Tương tự

5 tháng 8 2017

Ta có :

\(2x+3y-5z=55\)

\(3x=4y;2y=5z\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{2}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{16}\)

\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{2x+3y-5z}{2.19+3.12-2.16}=\dfrac{55}{22}=\dfrac{5}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{45}{2}\\\dfrac{y}{12}=\dfrac{5}{2}\Leftrightarrow x=30\\\dfrac{z}{16}=\dfrac{5}{2}\Leftrightarrow z=40\end{matrix}\right.\)

Vậy ..............

6 tháng 1 2019

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)  hay   \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)  =>  \(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}=\frac{3x-4y+5z}{54-64+75}=\frac{65}{65}=1\)

suy ra:  \(\frac{3x}{54}=1\)  =>  \(x=18\)

             \(\frac{4y}{64}=1\)   =>   \(y=16\)

             \(\frac{5z}{75}=1\) =>  \(z=15\)

6 tháng 1 2019

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

\(\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{4}{5}}\Rightarrow\frac{3x}{\frac{2}{3}.3}=\frac{4y}{\frac{3}{4}.4}=\frac{5z}{\frac{4}{5}.5}\)

\(\Leftrightarrow\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{4}\)

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU:

\(\Leftrightarrow\frac{3x}{2}-\frac{4y}{3}+\frac{5z}{5}\Rightarrow\frac{3x-4y+5z}{2-3+5}=\frac{65}{4}\)

\(\Rightarrow\frac{3x}{2}=\frac{65}{4}\Rightarrow3x=\frac{65}{4}.2\Rightarrow3x=\frac{65}{2}\Rightarrow x=\frac{65}{6}\)

\(\Rightarrow\frac{4y}{3}=\frac{65}{4}\Rightarrow4y=\frac{65}{4}.3\Rightarrow4y=\frac{195}{4}\Rightarrow y=\frac{195}{16}\)

\(\Rightarrow\frac{5z}{5}=\frac{65}{4}\Rightarrow5z=\frac{65}{4}.5\Rightarrow5z=\frac{325}{4}\Rightarrow z=\frac{65}{4}\)

# chúc bạn học tốt #

8 tháng 11 2018

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)

từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow x=15k,y=20k,z=24k\)

thay x=15k, y=20k, z=24k vào M ta có:

\(M=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)

vậy M=\(\frac{186}{245}\)

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

30 tháng 1 2017

Ta có:\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\\\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\end{cases}}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{4z}{96}=\frac{2x+3y+4z}{30+60+96}=\frac{2x+3y+4z}{186}\)(theo tính chất dãy tỉ số bằng nhau).(1)

\(\frac{3x}{45}=\frac{4y}{80}=\frac{5z}{120}=\frac{3x+4y+5z}{45+80+120}=\frac{3x+4y+5z}{245}\)(theo tính chất dãy tỉ số bằng nhau). (2)

Từ (1) và (2) \(\Rightarrow\frac{2x+3y+4z}{186}=\frac{3x+4y+5z}{245}\Rightarrow\frac{2x+3y+4z}{3x+4y+5z}=\frac{186}{245}\)