Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
1) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
<=> \(\frac{21x}{24}-\frac{100\left(x-9\right)}{24}=\frac{80x+6}{24}\)
<=> 21x - 100x + 900 = 80x + 6
<=> -79x - 80x = 6 - 900
<=> -159x = -894
<=> x = 258/53
Vậy S = {258/53}
2) \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
<=> \(\frac{3\left(4x^2+4x+1\right)}{15}-\frac{5\left(x^2+2x+1\right)}{15}=\frac{7x^2-14x-5}{15}\)
<=> 12x2 + 12x + 3 - 5x2 - 10x - 5 = 7x2 - 14x - 5
<=> 7x2 + 2x - 7x2 + 14x = -5 + 2
<=> 16x = 3
<=> x = 3/16
Vậy S = {3/16}
3) 4(3x - 2) - 3(x - 4) = 7x+ 10
<=> 12x - 8 - 3x + 12 = 7x + 10
<=> 9x - 7x = 10 - 4
<=> 2x = 6
<=> x = 3
Vậy S = {3}
4) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}+\frac{3\left(x^2+2x-8\right)}{12}=\frac{4\left(x^2+8x-20\right)}{12}\)
<=> x2 + 14x + 40 + 3x2 + 6x - 24 = 4x2 + 32x - 80
<=> 4x2 + 20x - 4x2 - 32x = -80 - 16
<=> -12x = -96
<=> x = 8
Vậy S = {8}
b) Ta có: \(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
⇔\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)-\left(x+1\right)^3=0\)
⇔\(x^3-6x^2+12x-8+9x^2-1-\left(x^3+3x^2+3x+1\right)=0\)
⇔\(x^3+3x^2+12x-9-x^3-3x^2-3x-1=0\)
⇔\(9x-10=0\)
hay 9x=10
⇔\(x=\frac{10}{9}\)
Vậy: \(x=\frac{10}{9}\)
c) \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
⇔\(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{5}=0\)
⇔\(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{3\left(x+7\right)}{15}=0\)
⇔\(3\left(2x-1\right)-5\left(x-2\right)-3\left(x+7\right)=0\)
⇔\(6x-3-5x+10-3x-21=0\)
⇔\(-2x-14=0\)
⇔\(-2x=14\)
hay x=-7
Vậy: x=-7
d) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
⇔\(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
⇔\(\frac{6\left(x-3\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
⇔\(6x-18+7x-35-13x-4=0\)
⇔\(-21\ne0\)
Vậy: x∈∅
e) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}-\frac{\left(x+10\right)\left(x-2\right)}{3}=0\)
⇔\(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{3\left(x+4\right)\left(2-x\right)}{12}-\frac{4\left(x+10\right)\left(x-2\right)}{12}=0\)
⇔\(x^2+14x+40-\left(3x+12\right)\left(2-x\right)-\left(4x+40\right)\left(x-2\right)=0\)
⇔\(x^2+14x+40-\left(24-6x-3x^2\right)-\left(4x^2+32x-80\right)=0\)
⇔\(x^2+14x+40-24+6x+3x^2-4x^2-32x+80=0\)
⇔\(-12x+96=0\)
⇔\(-12x=-96\)
hay x=8
Vậy: x=8
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)
⇔ 3(x - 3) = 90 - 5(1 - 2x)
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = \(\frac{-94}{7}\)
S = { \(\frac{-94}{7}\) }
b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)
⇔ 6x - 4 - 60 = 9 - 6x - 42
⇔ 6x + 6x = 9 - 42 + 60 + 4
⇔ 12x = 31
⇔ x = \(\frac{31}{12}\)
S = { \(\frac{31}{12}\) }
c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7
⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210
⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210
⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40
⇔ 13x = 150
⇔ x = \(\frac{150}{13}\)
S = { \(\frac{150}{13}\) }
d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)
⇔ 21x - 120(x - 9) = 4(2x + 1,5)
⇔ 21x - 120x + 1080 = 8x + 6
⇔ 21x - 120x - 8x = 6 - 1080
⇔ -107x = -1074
⇔ x = \(\frac{1074}{107}\)
S = { \(\frac{1074}{107}\) }
e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5
⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840
⇔ 140x -140+56 -294x+42= 96x+48 -840
⇔ 140x -294x -96x = 48 -840 -42 -56+140
⇔ -250x = -750
⇔ x = 3
S = { 3 }
f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)
⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x
⇔ 4x+4+18x+9 = 4x+6x+6+7+12x
⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4
⇔ 0x = 0
S = R
Chúc bạn học tốt !
Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html
Mình cảm ơn trước nhaa
mình làm câu cuối thôi nhé , những câu còn lại bạn tự làm đi , dễ mà :)))) chỉ cần quy đồng mẫu lên là được
\(=\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)
\(=\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)
\(=\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)
Vì \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)\) luôn khác 0
<=> x + 59 = 0
<=> x=-59
\(C=\frac{2^{12}\left(3^5-3^4\right)}{2^{12}\left(3^6+3^7\right)}-\frac{5^{10}\left(7^3-7^4\right)}{5^{10}\left(7^3+14^3\right)}\)
\(C=\frac{3^4\left(3-1\right)}{3^6\left(1+3\right)}-\frac{7^3\left(1-7\right)}{7^3+\left(2.7\right)^3}\)
\(C=\frac{2}{9.4}-\frac{7^3.\left(-6\right)}{7^3\left(1+8\right)}\)
\(C=\frac{2}{36}-\frac{-6}{9}=\frac{13}{18}\)