K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

Trả lời :

= 12

HokT~

:)

1 + 1 x 2 + 1 x 1 + 2 x 1 + 1 x 3 + 3 x 1 = 12

~Chúc anh hok tốt~

#Sa-ngu-ngốc

23 tháng 6 2021

1x2+3x1+4x2+5x1+6

= 2 + 3 + 8 + 5 + 6

= 5 + 8 + 5 + 6

= 13 + 5 + 6

= 24

DD
25 tháng 5 2021

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)

Phương trình tương đương với: 

\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)

DD
25 tháng 5 2021

c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)

\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)

\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

24 tháng 12 2016

Hỏi thật hả. 

27 tháng 2 2018

chịu vì em hok lớp 6

17 tháng 12 2017

a, Đặt :

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+..............+\dfrac{1}{19.21}\)

\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{19.21}\)

\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{19}-\dfrac{1}{21}\)

\(\Leftrightarrow2A=1-\dfrac{1}{21}\)

\(\Leftrightarrow2A=\dfrac{20}{21}\)

\(\Leftrightarrow A=\dfrac{10}{21}\)

17 tháng 12 2017

b, \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...........+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(\Leftrightarrow2A=1-\dfrac{1}{2n+1}\)

\(\Leftrightarrow2A=\dfrac{2n}{2n+1}\)

\(\Leftrightarrow A=\dfrac{n}{2n+1}\)

29 tháng 2 2016

Đặt \(A=\frac{1}{99.97}-\frac{1}{97.95}-\frac{1}{95.93}-....-\frac{1}{5.3}-\frac{1}{3.1}\)

\(\Rightarrow A=\frac{1}{99.97}-\left(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{93.95}+\frac{1}{95.97}\right)\)

\(\Rightarrow A=\frac{1}{99.97}-\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{95}-\frac{1}{97}\right)\)

\(\Rightarrow A=\frac{1}{99}-\frac{1}{97}-\frac{1}{2}\left(1-\frac{1}{97}\right)=\frac{1}{99}-\frac{1}{97}-\frac{1}{2}-\frac{1}{194}\)

17 tháng 9 2018

Đặt \(A=\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(-A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(-A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(-A=1-\frac{1}{99}\)

\(-A=\frac{98}{99}\)

\(A=\frac{-98}{99}\)

Chúc bạn học tốt ~ 

17 tháng 9 2018

Đặt A = \(\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

=> - A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

- A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

- A = \(1-\frac{1}{99}\)

- A = \(\frac{98}{99}\)

=> A = \(-\frac{98}{99}\)

Vậy A = \(-\frac{98}{99}\)

Hok tốt