\(\frac{x}{x-y}-\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(=\frac{y}{x-y}-\frac{x\left(x^2-y^2\right)}{x^2+y^2}.\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{\left(x-y\right)\left(x+y\right)}\right]\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\left[\frac{x\left(x +y\right)-y\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)}\right]\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\frac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)^2\left(x+y\right)}\)

\(=\frac{y}{x-y}-\frac{x}{x-y}=\frac{y-x}{x-y}=\frac{-\left(x-y\right)}{x-y}=-1\)

Vậy giá trị của biểu thức không phụ thuộc vào biến x và y

25 tháng 12 2016

à ờ

22 tháng 12 2016

Giao luu:

\(a=\left(\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right)=\left(\frac{x\left(x+y\right)-y\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)}\right)=\left(\frac{x^2+y^2}{\left(x-y\right)^2\left(x+y\right)}\right)\)

\(b=\frac{x^3-xy^2}{\left(x^2+y^2\right)}=\frac{x\left(x^2-y^2\right)}{x^2+y^2}=\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\)

\(c=\frac{y}{x-y}\)

\(P=c-ab\)

Điều kiện tồn tại P: \(!x!-!y!\ne0\)

\(P=\frac{y}{x-y}-\frac{x}{x-y}=\frac{y-x}{x-y}=-\frac{x-y}{x-y}=-1\)

30 tháng 12 2017

Mình làm mẫu cho 1 câu nha !

a, ĐKXĐ : x khác -3 ; -1 ; 2

Biểu thức =  2/x-2 - 2/(x+1).(x-2) . (1+x) = 2/x-2 - 2/x-2 = 0

=> Với điều kiện xác định thì giá trị biểu thức ko phụ thuộc vào biến

k mk nha

7 tháng 1 2022

\(\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{x^2-y^2}\right)-\frac{5x-3y}{y-x}\left(đk:x\text{≠}0-y;y\right).\)

\(=\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{\left(x-y\right)\left(x+y\right)}\right)-\frac{5x-3y}{y-x}\)

\(=\frac{\left(x+y\right)^2}{x}.\frac{x\left(x-y\right)-x\left(x+y\right)}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)

\(=\frac{1}{x}.\frac{x^2-xy-x^2-xy}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)

\(=\frac{1}{x}.\frac{-2xy}{x-y}+\frac{5x-3y}{x-y}\)

\(=\frac{-2y}{x-y}+\frac{5x-3y}{x-y}\)

\(=\frac{-2xy+5x-3y}{x-y}\)

\(=\frac{5\left(x-y\right)}{x-y}\)

\(=5\)

Ta có đpcm

25 tháng 7 2020

a) y(x2-y2)(x2+y2)-y(x4-y4)=y[(x2)2-(y2)2] - y(x4-y4)=y(x4-y4)-y(x4-y4)=0

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

b) \(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)

\(=\left[\left(2x\right)^3+\left(\frac{1}{3}\right)^3\right]-\left(8x^3-\frac{1}{27}\right)=8x^3+\frac{1}{27}-8x^3+\frac{1}{27}=\frac{1}{54}\)

vậy giá trị biểu thức không phụ thuộc vào biến (đpcm)

25 tháng 7 2020

c) (x - 1)^3 - (x - 1)(x^2 + x + 1) - 3(1 - x)x

= (x - 1)(x^2 + x + 1) - (x - 1)(x^2 + x + 1) - 3x(1 - x)

= x^3 - 3x^2 + 3x - 1 - x^3 + 1 - 3x + 3x^2

= 0 (đpcm)

4 tháng 1 2018

Ta có:

P=|xy|/xy+|x-y|/x-y(|x|/x-|y|/y) (1) 

Do x,y=/=0 và x,y>0  thì từ (1),ta có:

P=xy/xy+x-y/x-y(xy-xy/xy)

=>P=1+1.0(vì xy-xy=0)

=>P=1 Không phụ thuộc vào biến (đpcm)

5 tháng 1 2018

x;y khác 0 không chỉ x;y dương đâu bạn ạ. x;y có thể âm nữa