Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}\)
\(\Leftrightarrow S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=\frac{1}{1}-\frac{1}{n+3}\)
\(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}<1\)
20n+9 và 30n+13 nguyên tố cùng nhau khi ƯCLN(20n+9;30n+12)=\(\pm\)1
Gọi ƯCLN(20n+9;30n+12) là d
\(\Rightarrow\)20n+9 \(⋮\)d
30n+13 \(⋮\)d
\(\Rightarrow\)3.(20n+9)=60n+27\(⋮\)d
2.(30n+13)=60n+26 \(⋮\)d
\(\Rightarrow\)(60n+27)-(60n+26)\(⋮\)d
\(\Rightarrow\)1\(⋮\)d
\(\Rightarrow\)d\(\in\)ƯCLN(1)={1;-1}
Vậy 20n+9 và 30n+13 nguyên tố cùng nhau.
tóm lại cách làm bài này là:
gọi ưcln của những số cần chứng minh là d
sau đó tìm và nhân sao cho số n của 2 số bằng nhau.
VD: như bài trên mk lấy là số 60
sau đó trừ đi lấy kết quả ( bạn yên tâm tất cả kết quả đều là 1 hết, nếu không phải thì đề bài sai)
rồi làm như mình làm ở trên.
bài nào khó thì gửi cho mk nha. mk sẽ giúp bạn nhiệt tình. hi hi....
Ta có: \(n+7⋮n+4\)
\(\Rightarrow\left(n+4\right)+3⋮n+4\)
\(\Rightarrow3⋮n+4\)(do \(n+4⋮n+4\))
\(\Rightarrow n+4\inƯ\left(3\right)\)
\(\Rightarrow n+4\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-7;-5;-3;-1\right\}\)
Ta có :\(n+7⋮n+4\)
\(\Leftrightarrow n+4+3⋮n+4\)
\(\Leftrightarrow3⋮n+4\)
\(\Leftrightarrow n+4\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có bẳng sau :
\(n+4\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(-3\) | \(-5\) | \(-1\) | \(-7\) |
Vậy \(n\in\left\{-3;-5;-1;-7\right\}\)
Ta có :
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)
\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)
\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên :
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1\)
\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\)
\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)
Từ (1) và (2) suy ra :
\(n-2< S< n-1\)
Vì \(n>3\) nên \(S\) không là số tự nhiên
Vậy \(S\) không là số tự nhiên
Chúc bạn học tốt ~
thiếu, gtrị tổng đó là 7450