Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Đồ thị hàm số có 3 điểm cực trị ⇔ m > 0
Khi đó, tọa độ ba điểm cực trị là
O là trực tâm tam giác
Vậy, chọn phương án C.
Chọn D
Ta có
Vì f(x) < 0, ∀ x ∈ a ; c nên |f(x)| = –f(x).
Do đó, S 1 = - ∫ a c f x d x .
Tương tự, f(x) > 0, ∀ x ∈ a ; c nên |f(x)| = f(x).
Do đó, S 2 = ∫ c b f x d x .
Vậy S = - ∫ a c f x d x + ∫ c b f x d x .
Đáp án: B.
Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có hai cực đại, một cực tiểu.
Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2 - 2) = 0
⇔
Đáp án: B.
Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có hai cực đại, một cực tiểu.
Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2 - 2) = 0
⇔
\(y'=3x^2+2bx+c\)
Gọi \(x_1\) và \(x_2\) là 2 nghiệm của pt \(3x^2+2bx+c=0\)
\(\Rightarrow x_1+x_2=-\frac{2b}{3}\) ; \(x_1x_2=\frac{c}{3}\)
Mà I là trung điểm 2 cực trị \(\Rightarrow x_1+x_2=2x_I=4\)
\(\Rightarrow-\frac{2b}{3}=4\Rightarrow b=-6\)
Mặt khác \(y_1+y_2=2y_I=4\)
\(\Rightarrow x_1^3+x_2^3-6\left(x_1^2+x_2^2\right)+c\left(x_1+x_2\right)+6=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-6\left(x_1+x_2\right)^2+12x_1x_2+c\left(x_1+x_2\right)+2=0\)
\(\Leftrightarrow4^3-3.\frac{c}{3}.4-6.4^2+12.\frac{c}{3}+c.4+2=0\)
\(\Leftrightarrow4c=30\Rightarrow c=\frac{15}{2}\)
\(\Rightarrow\) Không có kết quả nào đúng
Đã kiểm tra lại kết quả bằng casio, ko thể sai được, cho nên hoặc là bạn ghi nhầm đề ở đâu đó, hoặc là các đáp án sai.
Vâng. Em cảm ơn ạ.