Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right)\cdot\dfrac{1}{\sqrt{3}}\)
\(=\sqrt{3}\cdot\dfrac{1}{\sqrt{3}}\)
=1
Bài 3:
a: \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
d: \(x^2-16=\left(x-4\right)\left(x+4\right)\)
e: \(x-81=\left(\sqrt{x}-9\right)\left(\sqrt{x}+9\right)\)
\(\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{2^2-\left(\sqrt{2}\right)^2}=\sqrt{4-2}=\sqrt{2}\)
Câu 1:
a: \(=5\sqrt{5}-4\sqrt{5}-12\sqrt{5}+12\sqrt{5}=\sqrt{5}\)
8: Ta có: \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
=2
`(4\sqrt{6}+x)^2=8^2+(6+\sqrt{x^2+4})^2`
`<=>96+8\sqrt{6}x+x^2=64+36+12\sqrt{x^2+4}+x^2+4`
`<=>2\sqrt{6}x-2=3\sqrt{x^2+4}` `ĐK: x >= \sqrt{6}/6`
`<=>24x^2-8\sqrt{6}x+4=9x^2+36`
`<=>15x^2-8\sqrt{6}x-32=0`
`<=>x^2-[8\sqrt{6}]/15x-32/15=0`
`<=>(x-[4\sqrt{6}]/15)^2-64/25=0`
`<=>|x-[4\sqrt{6}]/15|=8/5`
`<=>[(x=[24+4\sqrt{6}]/15 (t//m)),(x=[-24+4\sqrt{6}]/15(ko t//m)):}`
Đặt \(AB=a;AC=b\)
Xét \(\Delta ABC\) vuông tại A ta có :
Áp dụng hệ thức lượng trong \(\Delta\) vuông ta được :
\(\Leftrightarrow AH.BC=a.b\)
\(\Leftrightarrow ab=25.12=300\left(1\right)\)
Mặt khác:
Xét \(\Delta ABC\) vuông tại A, theo định lý Pytago ta được:
\(\Leftrightarrow a^2+b^2=BC^2\)
\(\Leftrightarrow a^2+b^2=625\)
\(\Leftrightarrow\left(a+b\right)^2-2ab=625\)
Thay \(\text{ab=}300\) vào ta được :
\(\Leftrightarrow\left(a+b\right)^2-600=625\)
\(\Leftrightarrow\left(a+b\right)^2=1225\)
\(\Rightarrow a+b=35\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) Giải phương trình ta được: \(\left\{{}\begin{matrix}a=15\\b=20\end{matrix}\right.\)
\(\Rightarrow AB=15;AC=20\)
Xét \(\Delta AHC\) vuông tại H, theo định lý Pytago ta được:
\(HC=\sqrt{AC^2-AH^2}=16\)
Ta có: \(AB.AC=AH.BC=12.25=300\left(1\right)\)
Lại có: \(AB^2+AC^2=BC^2=625\)
\(\Rightarrow\left(AB+AC\right)^2=AB^2+AC^2+2AB.AC=625+600=1225\)
\(\Rightarrow AB+AC=35\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AB,AC\) là nghiệm của pt \(x^2-35x+300=0\)
\(\Rightarrow\left(x-20\right)\left(x-15\right)=0\) mà \(AB< AC\Rightarrow\left\{{}\begin{matrix}AB=15\\AC=20\end{matrix}\right.\)
Ta có: \(AC^2=CH.CB\Rightarrow CH=\dfrac{AC^2}{CB}=\dfrac{20^2}{25}=16\)
\(\Rightarrow D\)