Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
5x + 1 - ( 5x - x2 )
= 5x + 1 - 5x + x2
= x2 + 1
vì x2 \(\ge\)0 nên x2 + 1 > 0
Vậy đa thức trên không có nghiệm
Ta có: lx-1l + l4-xl = 3 <=> lx-1l + lx-4l = 3
TH1: Nếu x < 1, ta có: TH2: Nếu 1 < x < 4, ta có: TH3: Nếu x > 4, ta có: 1 - x + 4 - x = 3 x - 1 + 4 - x = 3 x - 1 + x - 4 = 3 <=>5 - 2x = 3 <=> 3 =3 (TM) <=> 2x - 5 = 3
<=> 2x = 5 - 3 = 2 <=> x = 1;2;3;4 <=> 2x = 3 + 5 = 8 <=> x = 1 (TM) < => x = 4(TM) Vậy x = 1;2;3;4.
(-19,95 - 45,75) + (4,95 + 5,75)
=[(-19,95)+4,95]+[(-45,75)+5,75]
=(-15)+(-40)
=-55
đầu bài là như này đúng không hả bạn
\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
Ta có :\(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)\)\(=\frac{3}{4}\)
\(\frac{2}{3}:\left(x-1\right)\)\(=\frac{1}{4}\)
\(\left(x-1\right)\)\(=\frac{8}{3}\)
\(x=\frac{11}{3}\)
Đặt : \(P=\frac{48^2\cdot8^5\cdot100^9}{12^2\cdot2^{15}\cdot4^2}\)
\(=\frac{\left(2^4\cdot3\right)^2\cdot\left(2^3\right)^5\cdot\left(2^2\cdot5^2\right)^9}{\left(2^2\cdot3\right)^2\cdot2^{15}\cdot\left(2^2\right)^2}\)
\(=\frac{2^8\cdot3^2\cdot2^{15}\cdot2^{18}\cdot5^{18}}{2^4\cdot3^2\cdot2^{15}\cdot2^4}\)
\(=\frac{2^{41}\cdot3^2\cdot5^{18}}{2^{23}\cdot3^2}=2^{18}\cdot5^{18}=\left(2\cdot5\right)^{18}=10^{18}\)
Vậy : \(P=10^{18}\)
C
C