Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: sử dụng các tiên đề của Bo.
Cách giải:
Khi nguyên tử hấp thụ photon thì nó nhảy từ mức m lên mức n.
Tỉ số bán kính là:
+ Áp dụng tiên đề Bo về hấp thụ và bức xạ năng lượng, ta có
Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)
\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)
\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)
Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)
Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)
\(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)
Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)
Ở trạng thái kích thích thứ nhất: n = 2
Trạng thái kích thích thứ ba: n = 4
Ta có:
\(r_n=r_0.n^2\)
\(\Rightarrow r_2=r_0.4\)
\(r_4=r_0.16\)
\(\Rightarrow \dfrac{r_4}{r_2}=4\Rightarrow r_4=r_2.4=8,48.10^{-10}(m)\)
Chọn A.
Đáp án D