K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

7 tháng 5 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{50-1}{50}=\frac{49}{50}\)

19 tháng 6 2015

Ta thấy:\(\frac{1}{1.2}=1-\frac{1}{2},\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3},...,\frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)

=>\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

=>\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=>\(A=1-\frac{1}{50}\)

=>\(A=\frac{49}{50}\)

6 tháng 3 2018

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}\)

\(\Rightarrow A=\frac{49}{50}\)

DD
12 tháng 7 2021

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

\(B=1.2+2.3+3.4+...+49.50\)

\(3B=1.2.3+2.3.3+3.4.3+...+49.50.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50\)

\(=49.50.51\)

\(B=\frac{49.50.51}{3}=49.50.17\)

\(50^2.A-\frac{B}{17}=49.50-49.50=0\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{49}{50}\)

24 tháng 2 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}+\frac{51-50}{50.51}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{50}{51}\)

22 tháng 3 2015

A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

  = 1-\(\frac{1}{50}\)

  = \(\frac{49}{50}\)

14 tháng 3 2017

ta có công thức tính tổng quát 1/[n(n+1)] = 1/n -1/(n+1) 
=> A=1/1.2+ 1/2.3+1/3.4+1/4.5+...+1/49.50 
=1/1 -1/2 +1/2 -1/3 +1/3-1/4+.......+1/49 -1/50 
= 1 -1/50 = 49/50 

Ai thấy đúng thì tk cho mk nhé 

4 tháng 5 2019

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{50-1}{50}=\frac{49}{50}\)

4 tháng 5 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}=\frac{49}{50}\)

5 tháng 6 2017

Ta có:A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)

A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)

A=1-\(\dfrac{1}{51}=\dfrac{50}{51}\)

5 tháng 6 2017

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)

\(A=\dfrac{1}{1}-\dfrac{1}{51}\)

\(A=\dfrac{50}{51}\)

1 tháng 3 2017

A=1/1-1/2+1/2-1/3+1/3-1/4+....+1/49-1/50

A=1/1-1/50

A=49/50

Vay A=49/50

B=1/3-1/5+1/5-1/7....+1/37-1/39

B=1/3-1/39

b=36/117

B=4/13

11 tháng 7 2019

39%.21%=18% ; 1000/125.125/1000

11 tháng 9 2023

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A=\dfrac{1}{1}-\dfrac{1}{50}\)

\(A=\dfrac{49}{50}\)

11 tháng 9 2023

A = 49/50