Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: k=-2/5
=>y=-2/5x
Khi x=-1 thì y=2/5
b: Khi y=3 thì -2/5x=3
hay x=3:(-2/5)=-3x5/2=-15/2
Áp dụng bđt \(\frac{m^2}{p}+\frac{n^2}{q}\ge\frac{\left(m+n\right)^2}{p+q}\) được
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu "=" khi ay = bx
Lời giải:
a) Ta có:
\(f(x)=ax^2+bx+c\Rightarrow \left\{\begin{matrix} f(10)=100a+10b+c\\ f(-3)=9a-3b+c\end{matrix}\right.\)
\(\Rightarrow f(10)-f(-3)=91a+13b=13(7a+b)=0\)
\(\Rightarrow f(10)=f(-3)\)
\(\Rightarrow f(10)f(-3)=f^2(10)\geq 0\)
Tức là tích $f(10)f(-3)$ không thể là số âm.
b)
Có: \(A=2018-|x+1|-|x+2|=2018-(|x+1|+|x+2|)\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) thì:
\(|x+1|+|x+2|=|x+1|+|-x-2|\geq |x+1-x-2|=1\)
\(\Rightarrow A=2018-(|x+1|+|x+2|)\leq 2018-1=2017\)
Vậy \(A_{\max}=2017\)
Dấu bằng xảy ra khi
\((x+1)(-x-2)\geq 0\Leftrightarrow (x+1)(x+2)\leq 0\Leftrightarrow -2\leq x\leq -1\)
\(\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)
Mà \(\frac{a}{2}=\frac{b}{3}=\frac{a^3}{2^3}=\frac{b^3}{3^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{2^3}=\frac{b^3}{3^3}=\frac{a^3-b^3}{2^3-3^3}=\frac{19}{8-27}=\frac{19}{-19}=-1\)
=> a = -2
b = -3
=> a + b = -2 + [-3] = -5
Tks bạn nhiều...Nhưng mà thầy mình giải rồi