K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

A B C D

25 tháng 12 2016

a) Xét \(\Delta ADB\)\(\Delta ADC\) ta có:

\(\widehat{BAD}+\widehat{B}+\widehat{BDA}=180^o\)

\(\widehat{DAC}+\widehat{C}+\widehat{CDA}=180^o\)

\(\widehat{B}=\widehat{C}\left(gt\right)\)(*)

\(\widehat{BAD}=\widehat{DAC}\) (AD là phân giác)

\(\Rightarrow\widehat{BDA}=\widehat{CDA}\) (**)

AD là cạnh chung. (***)

Vậy: từ (*) (**) (***) ta có \(\Delta ADB\) = \(\Delta ADC\) (g.c.g)

b) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)

\(\Rightarrow AB=AC\) (2 cạnh tương ứng)

c) Vì: \(\Delta ADB\) = \(\Delta ADC\) (cm a)

\(\Rightarrow DB=DC\) (2 cạnh tương ưng)

Mà D thuộc BC (gt)

=> D là trung điểm của BC. (****)

Lại có: AD là tia phân giác góc A (*****)

Từ (****) và (*****) suy ra AD là đường trung trực của BC

 

24 tháng 12 2016

đề bài câu d bị sai thì phải

24 tháng 12 2016

câu d đề sai hoàn toàn

a: XétΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

mà AD là tia phân giác

nên AD là đường cao

b: Xét ΔABE và ΔACF có 

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)

BE=CF

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

24 tháng 12 2023

a: Ta có: ΔABC cân tại A

mà AI là đường phân giác

nên I là trung điểm của BC và AI\(\perp\)BC

Xét ΔMBC có

MI là đường cao

MI là đường trung tuyến

Do đó: ΔMBC cân tại M

b: Ta có: AI\(\perp\)BC

I là trung điểm của BC

Do đó: AI là đường trung trực của BC

c: Ta có: DH\(\perp\)BC

AI\(\perp\)BC

Do đó: DH//AI

=>\(\widehat{BDH}=\widehat{BAI}\)(hai góc đồng vị)

mà \(\widehat{BAC}=2\cdot\widehat{BAI}\)(AI là phân giác của góc BAC)

nên \(\widehat{BAC}=2\cdot\widehat{BDH}\)

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

b: Xét ΔAEB và ΔAFC có 

EB=FC

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

Do đó: ΔAEB=ΔAFC

Suy ra: AE=AF

18 tháng 1 2022

cảm ơn

b: Ta có: D nằm trên đường trung trực của BC

nên DB=DC

16 tháng 9 2019

Giải bài 44 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 44 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 44 trang 125 Toán 7 Tập 1 | Giải bài tập Toán 7

Do đó ΔADB = ΔADC (g.c.g)

27 tháng 11 2016

Ta có hình vẽ sau:

B D C 1 2 A

a) Xét ΔABD và ΔACD có:

AD : Cạnh chung

\(\widehat{A_1}\) = \(\widehat{A_2}\) (gt)

AB = AC (gt)

=> ΔABD = ΔACD (c.g.c)

=> \(\widehat{B}\) = \(\widehat{C}\) (2 góc tương ứng) (đpcm)

b) Vì ΔABD = ΔACD (ý a)

=> \(\widehat{BDA}=\widehat{CDA}\) (2 góc tương ứng)

\(\widehat{BDA}+\widehat{CDA}=180^o\) (kề bù)

=> \(\widehat{BDA}=\widehat{CDA}=\frac{180^o}{2}=90^o\) (*)

Từ (*) => AD \(\perp\) BC (đpcm)

c) Vì ΔABD = ΔACD (ý a)

=> BD = CD (2 cạnh tương ứng)

=> D là trung điểm của BC

mà AD \(\perp\) BC

=> AD là đường trung trực của BC (đpcm)

 

 

 

27 tháng 11 2016

Bạn tự vẽ hình nha

a) xét ΔABD và ΔACD có :

góc BAD = CAD ( GT)

AD : cạnh chung

AB= AC ( GT)

-> ΔBAD = Δ CAD( c.g.c)

--> góc B= C ( cặp góc tương ứng)

b) Ta có góc ADB= ADC ( ΔBAD = ΔCAD )

Mà ADB + ADC = 180' ( bù nhau)

--> ADB= ADC = 180' :2 = 90'

--> AD vuông góc với BC

c) Ta có BD= DC (ΔBAD = ΔCAD )

Mà Ad vuông góc vơí BC

--> AD là đường trung trực của BC

a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có

BE chung

góc ABE=góc DBE

=>ΔBAE=ΔBDE
b: BA=BD

EA=ED

=>BE là trung trực của AD
c: góc BAD+góc CAD=90 độ

góc HAD+góc BDA+90 độ

góc BAD=góc BDA

=>góc CAD=góc HAD

=>AD làphân giác của góc HAC

a: Xét ΔABD và ΔACD có

AB=AC

BD=CD

AD chung

Do đó: ΔABD=ΔACD

=>\(\widehat{BAD}=\widehat{CAD}\)

mà tia AD nằm giữa hai tia AB và AC

nên AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔACM có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔABM=ΔACM

=>\(\widehat{ABM}=\widehat{ACM}\)

mà \(\widehat{ACM}=90^0\)

nên \(\widehat{ABM}=90^0\)

=>AB\(\perp\)BM

 

8 tháng 1

bạn cho mình hình vẽ được không ạ