K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)

2 tháng 5 2016

Giả sử n2 + 2006 là số chính phương khi đó ta đặt n2 + 2006 = a2 ( a∈ Z) ⇔ a2 – n2 = 2006 ⇔ ( a - n ) ( a + n ) = 2006 ( * ) 

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của ( * ) là số lẻ nên không thỏa mãn ( * ) 

+ Nếu a,n cùng tính chẵn hoặc lẻ thì ( a - n )⋮2 và ( a + n ) ⋮2 nên vế trái chia hết cho 4 và vế phải không chia hết cho 4 nên không thỏa mãn ( * )

Vậy không tồn tại n để n2 + 2006 là số chính phương

2 tháng 5 2016

 b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2 chia hết cho 3 dư 1 do đó n2 + 2006 = 3m + 1 + 2006 = 3m + 2007 = 3( m + 669 ) chia hết cho 3. 

Vậy n2 + 2006 là hợp số.

13 tháng 5 2016

1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)

=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k

=3(3k^2+2k) chia het cho 3

ma n^2-1>3 voi n>2;n ko chia het cho 3

=>n^2-1 la hop so tai n chia 3 du 1(n>2)

*Voi n=3p+2(dk cua p)

=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1

=9p^2+12p+3

=3(3p^2+4p+1) chia het cho 3

ma n^2-1>3 voi n>2;n ko chia het cho 3

=>n^2-1 la hop so tai n chia 3 du 2(n>2)

=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3

=>n^2-1 và n^2+1 ko thể đồng thời là

số nguyên tố voi n>2;n ko chia hết cho 3

13 tháng 10 2018

a)Ta có 

p = 42k + y  = 2. 3 .7 . k + r (k,r thuộc N, 0 < y < 42 )

Vì y là số nguyên tố nên r không chia hết cho 2, 3, 7.

Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9, 15, 21, 25, 27, 33, 35, 39.

Loại đi các số chia hết cho 3, cho 7, chỉ còn 25.