K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
25 tháng 1 2019

??????????????????????

25 tháng 1 2019

A B C D M E F K H S I J

a) Bằng tính chất của hình bình hành và hệ quả ĐL Thales ta có: 

\(\frac{KM}{KH}=\frac{BF}{BC}=\frac{MF}{DC}=\frac{MF}{EF}\). Suy ra KF // EH (Theo ĐL Thales đảo) (đpcm).

b) Gọi giao điểm của EK và HF là S. Ta đi chứng minh B,D,S thẳng hàng. Thật vậy:

Gọi MS cắt EH và KF lần lượt ở I và J.

Theo bổ đề hình thang (cho hình thang KEHF) thì I là trung điểm EH và J là trung điểm KF

Do các tứ giác BKMF và DEMH là hình bình hành nên BD đi qua trung điểm của EH và KF 

Từ đó suy ra: 2 đường thẳng BD và MS trùng nhau hay 3 điểm B,D,S thẳng hàng => ĐPCM.

c) Dễ thấy: SKEF = SKHF (Chung đáy KF, cùng chiều cao vì KF//EH) => SKME = SFMH 

Mà SMKAE = 2.SKME; SMHCF = 2.SFMH nên SMKAE = SMHCF (đpcm).

Bài 1:a) tìm x,y,z biết\(x^2+y^2+z^2=xy+yz+zx\)\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)b) Giải phương trình\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại Fa)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOCb)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)c) Gọi K là điểm bất kì...
Đọc tiếp

Bài 1:

a) tìm x,y,z biết

\(x^2+y^2+z^2=xy+yz+zx\)

\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

b) Giải phương trình

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại F

a)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOC

b)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

c) Gọi K là điểm bất kì thuộc OE,nêu cách dựng đường thẳng đi qua K và chia đôi diện tích tam giác DEF

Bài 3: Cho hình bình hành ABCD, vẽ đường thẳng d cắt các cạnh AB, AD tại M và K và cắt đường chéo AC tại G. CMR: \(\frac{AB}{AM}+\frac{AD}{AK}=\frac{AC}{AG}\)

TRONG BÀI 2, BÀI 3 BIẾT CÂU NÀO LÀM CÂU ĐÓ

GIÚP MÌNH BÀI HÌNH NHÉ MÌNH SẼ KẾT BẠN VÀ THƯỞNG 1 TICK/CÂU

 

0
20 tháng 2 2020

a, góc FAD + góc DAE = 90 

góc BAE  + góc DAE = 90 

=> góc FAD = góc BAE 

xét tam giác ADF và tam giác ABE có : góc ADF = góc ABE = 90

AD = AB do ABCD là hình vuông (gt)

=> tam giác ADF = tam giác ABE (cgv-gnk)

=> AF = AE (đn)

=> tam giác AFE cân tại A (đn)

góc AFE = 90 (gT)

=> tam giác AFE vuông cân (dh)

b, tam giác AFE cân tại A (câu a)

AI Là trung tuyến của tam giác AFE (gt)

=> AI _|_ FE (đl)                                                                                 (1)

EG // AB (gt)

AB // DC do ABCD là hình vuông (gT)

=> EG // FK                                    (2)

=> góc GEI = góc IFK  (slt)

xét tam giác GIE và tam giác KIF có : góc GIE = góc KIF (đối đỉnh)

FI = IE do I là trđ của FE (gt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> GE = FK (3)

(2)(3) => GEFK là hình bình hành và (1)

=> GEFK là hình thoi (dh)