Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(\frac{3n+2}{n+1}=\frac{3\left(x+1\right)-1}{n+1}=\frac{-1}{n+1}\)
=> n + 1 \(\in\)Ư(-1) = {1;-1}
Tự lập bảng xét giá trị bn nhé !
Bài 2 :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
\(\Leftrightarrow\frac{5}{x}=\frac{1+2y}{6}\)
\(\Leftrightarrow30=x\left(1+2y\right)\)
Tự lập bảng nhé !
bài tập đội tuyển hay chuyên đề vậy?
Chia 3 TH của n: n=3k, n=3k+1, n=3k+2
TH1: n=3k suy ra 2n chi hết cho 3
111...1 có tổng các chữ số là n chia hết cho 3 => 111...1 chia hết cho 3
Vậy tổng chia hết cho 3
chỉ sửa chỗ :
=>5(3n+1) chia hết cho d
=>3(5n+2)
=>15n+5 chia hết cho d
=>15n +6 chia hết cho d
từ đó........
3n + 1 và 5n +2 là 2 số nguyên tố cùng nhau
Gọi d là UCLN ( 3n+1 và 5n+2)
Ta có:
3n+1 chia hết cho d
5n+2 chia hết cho d
=> 5(3n+1) chia hết cho d
=> 3(5n+2) chia hết cho d
=> 15n+ 1 chia hết cho d
=> 15n+2 chia hết cho d
=> 15n+2- 15n+1 chia hết chi d
=> 1 chia hết cho d
=> d thuộc Ư ( 1)
=> UCLN ( d) = 1
=> UCLN ( d)= UCLN ( 3n+1 và 5n+2
Nguyên tố cùng nhau
tick nhé
1, Ta có: p, p+1, p+2 là 3 số liên tiếp nên chắc chắn có 1 số chia hết cho 3 -> p+1 hoặc p+2 chia hết cho 3
p+2+6=p+8 là snt nên ko chia hết cho 3 nên p+1 chia hết cho 3 -> p+1+99 = p+100 chia hết cho 3 -> là hợp số
2, a, Nếu p có dạng 6k,6k+2,6k+3,6k+4 thì chia hết cho 2 hoặc 3
b, Do p là snt > 3 nên 8p ko chia hết cho 3. Trong 3 số liên tiếp 8p,8p+1,8p+2 có 8p và 8p+1 ko chia hết cho 3 nên 8p+2 chia hết cho 3.
Chia cho 2, do(2,3) = 1 nên 4p+1 chia hết cho 3 là hợp số
gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3
tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3
tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4
thanks bn những bn có thể tra lời giúp mình hết có được ko???
Phân số tối giản khi ƯCLN của cả tử và mẫu là 1.
Gọi ƯCLN(2n+2011;n+1005)=a
\(\Rightarrow2n+2011⋮a\)
\(\Rightarrow n+1005⋮a\Rightarrow2n+2010⋮a\)
\(\Rightarrow\left(2n+2011\right)-\left(2n+2010\right)⋮a\Rightarrow1⋮a\Rightarrow a=1\)
Vậy suy ra phân số \(\frac{2n+2011}{n+1005}\)là phân số tối giản.
Giải như sau:
Đặt 2n+1=a22n+1=a2 và 3n+1=b23n+1=b2
Dễ thấy 4.(2n+1)−(3n+1)=5n+3=4a2−b2=(2a−b)(2a+b)4.(2n+1)−(3n+1)=5n+3=4a2−b2=(2a−b)(2a+b)
Từ đây suy ra đpcmđpcm vì 5n+35n+3 đã thành tích của 2 số nên là hợp số
Giải như sau:
Đặt 2n+1=a\(^2\)
2n+1=a2 và 3n+1=b\(^2\)
Dễ thấy 4.(2n+1)−(3n+1)=5n+3=4a\(^2\)
−b\(^2\)
=(2a−b)(2a+b)4.(2n+1)−(3n+1)=5n+3=4a2−b2=(2a−b)(2a+b)
Từ đây suy ra đpcmđpcm vì 5n+35n+3 đã thành tích của 2 số nên là hợp số