K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2021

jdhjdhshfsjsxhxhxx                  udjdghxhjxhg

20 tháng 12 2021

sao dạo này toàn người cho toán lớp 9 nhỉ khó qué

10 tháng 2 2017

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.

Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

        2x + 2 = x

=> x = -2 => y = -2

Suy ra tọa độ giao điểm là A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

- Tọa độ điểm C:

Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

    x = 2 => y = 2 => tọa độ C(2; 2)

- Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)

Để học tốt Toán 9 | Giải bài tập Toán 9

2 tháng 2 2021

a) 1 0 2 y x C y = x y=2x+2 H B -1 2

+) y = 2x + 2

Cho x = 0 => y = 2

                => ( 0 ; 2 )

        y = 0 => x = -1

                => ( -1 ; 0 )

- Đồ thị hàm số y = x đi qua 2 điểm có tọa độ ( 0 ; 0 )

- Đồ thị hàm số y = 2x + 2 đi qua 2 điểm có tọa độ ( 0 ; 2 ) và ( -1 ; 0 )

b) Hoành độ điểm A là nghiệm của PT sau :

x = 2x + 2

<=> 2x - x = -2

<=> x = -2

=> y = -2 

Vậy A ( -2 ; -2 )

c) Tung độ điểm C = 2 => hoành độ điểm C là x = 2

=> C ( 2 ; 2 )

Từ A hạ \(AH\perp BC\), ta có : AH = 4cm

                                                 BC = 2cm

Vậy : ..............

\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4.2=4\left(cm^2\right)\)

26 tháng 12 2019

a) - Vẽ đồ thị hàm số y = 0,5x + 2 (1)

    Cho x = 0 => y = 2 được D(0; 2)

    Cho y = 0 => 0 = 0,5.x + 2 => x = -4 được A(-4; 0)

Nối A, D ta được đồ thị của (1).

- Vẽ đồ thị hàm số y = 5 – 2x (2)

    Cho x = 0 => y = 5 được E(0; 5)

    Cho y = 0 =>0 = 5 – 2x => x = 2,5 được B(2,5; 0)

Nối B, E ta được đồ thị của (2).

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Ở câu a) ta tính được tọa độ của hai điểm A và B là A(-4 ; 0) và B (2,5 ; 0)

Hoành độ giao điểm C của hai đồ thị (1) và (2) là nghiệm của phương trình:

0,5 x + 2 = 5 - 2x

⇔ 0,5x + 2x = 5 – 2

⇔ 2,5.x = 3 ⇔ x = 1,2

⇒ y = 0,5.1,2 + 2 = 2, 6

Vậy tọa độ điểm C(1,2; 2,6).

c) AB = AO + OB = |-4| + |2,5| = 6,5 (cm)

Gọi H là hình chiếu của C trên Ox, ta có H( 1,2; 0)

Ta có: AH = AO + OH = 4 + 1,2 = 5,2

BH = BO – OH = 2,5 – 1,2 = 1,3

CH = 2,6

Để học tốt Toán 9 | Giải bài tập Toán 9

d) Gọi α là góc hợp bởi đường thẳng y = 0,5x + 2 với tia Ox.

Ta có: tgα = 0,5 => α = 26o34'

Gọi β là góc hợp bởi đường thẳng y = 5 - 2x với tia Ox

Tam giác OEB vuông tại O nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

22 tháng 12 2023

a: 

loading...

b: Phương trình hoành độ giao điểm là:

4-2x=3x+1

=>-2x-3x=1-4

=>-5x=-3

=>\(x=\dfrac{3}{5}\)

Thay x=3/5 vào y=3x+1, ta được:

\(y=3\cdot\dfrac{3}{5}+1=\dfrac{9}{5}+1=\dfrac{14}{5}\)

Vậy: \(N\left(\dfrac{3}{5};\dfrac{14}{5}\right)\)

c: (d'): y=3x+1

=>a=3

\(tan\alpha=a=3\)

=>\(\alpha\simeq71^034'\)

18 tháng 11 2021

\(b,\) PTHDGD: \(x+2=-\dfrac{1}{2}x+2\Leftrightarrow x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

PT giao Ox của \(y=x+2:\) \(y=0\Leftrightarrow x=-2\Leftrightarrow A\left(-2;0\right)\Leftrightarrow OA=2\)

PT giao Ox của \(y=-\dfrac{1}{2}x+2:\) \(y=0\Leftrightarrow-\dfrac{1}{2}x=-2\Leftrightarrow x=4\Leftrightarrow B\left(4;0\right)\Leftrightarrow OB=4\)

Ta có: \(\left\{{}\begin{matrix}AB=OA+OB=6\\AC=\sqrt{\left(-2\right)^2+2^2}=2\sqrt{2}\\BC=\sqrt{4^2+2^2}=2\sqrt{5}\end{matrix}\right.\)

Do đó \(P_{ABC}=AB+BC+CA=6+2\sqrt{2}+2\sqrt{5}\)

\(S_{ABC}=\dfrac{1}{2}OC\cdot AB=\dfrac{1}{2}\cdot2\cdot6=6\left(đvdt\right)\)

25 tháng 11 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)

23 tháng 4 2017

(đơn vị đo trên các trục tọa độ là xentimet)

Lời giải:

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

5 tháng 1 2018

a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)

Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)

b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:

\(x=2x+2\)

\(\Leftrightarrow\) \(x-2x=2\)

\(\Leftrightarrow\) \(-x=2\)

\(\Leftrightarrow\) \(x=-2\)

Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)

Vậy tọa độ điểm A \(\left(-2;-2\right)\)

c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)

\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)

Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x

\(\Rightarrow\) Tọa độ điểm C (2;2)

\(S_{ABC}=S_{ADO}+S_{BCOD}\)