Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
Từ \(x\ge2\) cộng cả hai vế với \(\dfrac{1}{2}\) ta được
\(x+\dfrac{1}{2}\ge2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(VT=x+\dfrac{1}{2}=x-2+2+\dfrac{1}{2}=\left(x-2\right)+\dfrac{5}{2}\)
\(\left\{{}\begin{matrix}x\ge2\Rightarrow x-2\ge0\\VT=\left(x-2\right)+\dfrac{5}{2}\ge\dfrac{5}{2}=VP\rightarrow dpcm\end{matrix}\right.\)
a/ PT <=> x + 27 = y(x -3)
<=> \(\frac{27+x}{x-3}=y\)
<=> \(1+\frac{30}{x-3}=\:y\)
Vì y > 10 đồng thời x -3 phải là ước của 30 nên có nghiệm (x,y) = (9, 6; 13, 4; 18, 3; 33, 2)
b/ x2 + 27 = y2
<=> 27 = (y - x)(y + x)
Tới đây thì đơn giản rồi bạn làm tiếp đi
ta có x/a=y/b=z/c
=> x^2/ax=y^2/bx=z^2/cx
= x^2+y^2+z^2/ax+by+cz (1)
x/a=y/b=z/c
=> ax/a^2=bx/b^2=cx/c^2
=ax+bx+cx/a^2+b^2+c^2
từ 1, 2 => x^2+y^2+z^2/ax+by+cz= ax+bx+cx/a^2+b^2+c^2
=>(x^2+y^2+z^2)(a^2+b^2+c^2)=(ax+by+cz)^2 (đpcm)
quà mà chúng ta nhận đc là của bố mẹ
***Ai thấy đúg thik k nhé
~.~,@.@
Câu 1:
Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)
\(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)
\(=-2xy\)
Tại \(x=\frac{1}{2};y=-100\) PT có dạng:
\(=-2.\frac{1}{2}.\left(-100\right)=100\)
ta có hệ
\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\)cộng hai phương trình lại , ta có \(5x=10z\Rightarrow x=2z\Rightarrow y=3z\) thế vào M ta có
\(M=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=\frac{4-12}{4+9}=-\frac{8}{13}\)
\(x^2=\left(x+y\right)^2\)
\(\Leftrightarrow x^2=x^2+2xy+y^2\)
\(\Leftrightarrow2xy+y^2=0\)
\(\Leftrightarrow y\left(2x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-2x\end{matrix}\right.\)
\(\left(x+y\right)^2=\left(x+9\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2=x^2+18x+81\)
\(\Leftrightarrow2xy-18x+y^2=81\)(1)
Thay y =0 vào (1),có:
\(0-18x+0=81\Leftrightarrow x=\frac{-9}{2}\)
Thay \(y=-2x\) vào (1),có:
\(2x.\left(-2x\right)-18x+\left(-2x\right)^2=81\)
\(\Leftrightarrow-4x^2-18x+4x^2=81\)
\(\Leftrightarrow x=-\frac{9}{2}\)
Vì \(-\frac{9}{2}\) là nghiệm âm nên pt ko có nghiệm dương
36 - y mũ 2 = 8.(x - 2018) mũ 2