Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH=EF
b: góc IFE=90 độ
=>góc IFH+góc EFH=90 độ
=>góc IFH+góc AHF=90 độ
=>góc IFH=góc IHF
=>IH=IF và góc IFC=góc ICF
=>IH=IC
=>I là trung điểm của HC
Xét ΔHAC có HO/HA=HI/HC
nên OI//AC và OI=AC/2
=>OI//AK và OI=AK
=>AOIK là hình bình hành
c) \(\widehat{AEF}=\widehat{EAH}=90^0-\widehat{ABH}=\widehat{ACB}\)
\(\Rightarrow\)△AFE∼△ABC (g-g)
\(\Rightarrow\dfrac{AF}{AB}=\dfrac{AE}{AC}\Rightarrow AB.AE=AC.AF\).
d) \(\widehat{CAM}=90^0-\widehat{AFE}=90^0-\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow\)△ACM cân tại M \(\Rightarrow MA=MC\left(1\right)\)
\(\widehat{BAM}=90^0-\widehat{AEF}=90^0-\widehat{ACB}=\widehat{ABC}\)
\(\Rightarrow\)△ABM cân tại M \(\Rightarrow MA=MB\left(2\right)\)
-Từ (1) và (2) suy ra: \(MB=MC\) nên M là trung điểm BC.
e) \(\dfrac{S_{AFE}}{S_{ABC}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{\dfrac{1}{2}S_{AEHF}}{2S_{AEHF}}=\left(\dfrac{EF}{BC}\right)^2\)
\(\Rightarrow\dfrac{1}{4}=\left(\dfrac{EF}{BC}\right)^2\Rightarrow\dfrac{EF}{BC}=\dfrac{AH}{BC}=\dfrac{1}{2}\)
\(\Rightarrow H\equiv M\)
\(\Rightarrow\)△ABC vuông cân tại A.
a,Tứ giác AEHG la hình chữ nhật.thật vậy:
xét tứ giác AEHG có goc a=90 độ ,góc E=90 độ(HE VUÔNG GÓC VỚI AB) , góc H=90 độ (AH vuông góc với BC)
suy ra tứ giác AEHG la hình chữ nhật
b,xét tam giac BHA có AH^2=AE*AB (1)
xét tam giác AHC có AH^2=AF*AC (2)
Từ (1) và (2) suy ra AE*AB=AF*AC
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>EF=AH
b: \(S_{ABC}=\dfrac{1}{2}\cdot3\cdot4=2\cdot3=6\left(cm^2\right)\)
\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
chỉ cần làm câu B thôi nha câu A mình làm xong r
2: AM=5cm