Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMD và ΔCMB có
góc AMD=góc CMB
MA=MC
góc MAD=góc MCB
=>ΔAMD=ΔCMB
b: Xét ΔCEA có BM//AE
nên BM/AE=CM/CA=1/2
=>AE=2BM
c: Xét tứ giác ADBE có
AD//BE
AE//BD
=>ADBE là hbh
=>AB cắt DE tại trung điểm của mỗi đường
=>E,N,D thẳng hàng
a) Xét tam giác ABI và tam giác ACI có:
BI = CI (gt)
AB = AC (gt)
AI : cạnh chung
=> Tam giác ABI = tam giác ACI
b) Xét tam giác ABC có AB = AC
=> Tam giác ABC cân tại A
=> AI vừa là đường trung tuyến (vì I là trung điểm BC), vừa là đường cao
=> AI vuông góc BC
c) Ta có: AI vuông góc BC (cmt)
EC vuông góc BC (gt)
=> EC // AI
a: Xét ΔAMN có
Ax vừa là đường cao, vừa là phân giác
=>ΔAMN cân tại A
b: BE//AC
=>góc BEM=góc ANE
=>góc BEM=góc BME
=>BE=BM
Xét ΔDEB và ΔDNC có
góc DBE=góc DCN
DB=DC
góc BDE=góc NDC
=>ΔDEB=ΔDNC
=>BE=NC
=>BE=CN
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
\(\widehat{B}=\widehat{C}\)
Do đó: ΔHDB=ΔHEC
b: Ta có: ΔHDB=ΔHEC
nên BD=EC
Ta có: AD+DB=AB
AE+EC=AC
mà BD=CE
và AB=AC
nên AD=AE
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
b: Xét ΔADM vuông tại D và ΔAEM vuông tại E có
AM chung
góc DAM=góc EAM
=>ΔADM=ΔAEM
=>MD=ME
=>ΔMED cân tại M
c: Xét ΔCAB có
M là trung điểm của CB
MF//AB
=>F là trung điểm của AC
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
b: Sửa đề: Chứng minh AC=AE
Ta có: CE//AI
=>\(\widehat{AEC}=\widehat{BAI};\widehat{CAI}=\widehat{ACE}\)
mà \(\widehat{BAI}=\widehat{CAI}\)(ΔABI=ΔACI)
nên \(\widehat{AEC}=\widehat{ACE}\)
=>AC=AE