|x+1|+|x−2||x+1|+|x−2|và các mệnh đề 

Câu 49. Hàm số y=-

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

Câu 50: Hàm số y=2 là hàm số hằng

23 tháng 10 2021

Đề thiếu rồi bạn

23 tháng 10 2021

Câu 48: B

Câu 49: C

30 tháng 4 2023

B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)

24 tháng 9 2016

a) D=R

* Nếu x1;x2 \(\in\) \(\left(-\infty;0\right)\); x1\(\ne\) x2

x1> x2 thì x12+2x1+3 <  x22+2x2+3

 <=>       \(\sqrt{x_1^2+2x_1+3}< \sqrt{x_2^2+2x_2+3}\)

<=>         \(f\left(x_1\right)< f\left(x_2\right)\)

Hàm số nghịch biến

12 tháng 4 2017

a) hệ số a=-2=>y luôn nghịch biến

b) a=1 >0 và -b/2a =-5 => (-5;+vc) y luôn đồng biến

c) hàm y có dạng y=a/(x+1)

a =-1 => y đồng biến (-vc;-1) nghich biến (-1;+vc

=>

(-3;-2) hàm y đồng biến

(2;3) hàm y đồng biến

26 tháng 4 2017

a) Hàm số \(y=-2x+3\) có a = -2 < 0 nên hàm số nghịch biến trên R.
b. Xét tỉ số \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left(x^2_1+10x_1+9\right)-\left(x^2_2+10x_2+9\right)}{x_1-x_2}\)
\(=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2+10\right)}{x_1-x_2}=x_1+x_2+10\).
Với \(x_1;x_2\notin\left(-5;+\infty\right)\) thì \(x_1+x_2+10\ge0\) nên hàm số y đồng biến trên \(\left(-5;+\infty\right)\).
c) Xét tỉ số: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}}{x_1-x_2}=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Trên \(\left(-3;-2\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}< 0\) nên hàm số y nghịch biến trên \(\left(-3;-2\right)\).
Trên \(\left(2;3\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}>0\) nên hàm số y đồng biến trên \(\left(2;3\right)\).

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

$D=(1; +\infty)$

Ta có $y'=\frac{-3}{(x-1)^2}< 0$ với mọi $x\in (1;+\infty)$

Do đó hàm số luôn nghịch biến trên $(1;+\infty)$