Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{x+2}{x+1}\Rightarrow y'=\dfrac{-1}{\left(x+1\right)^2}\)
Gọi giao điểm của tiếp tuyến tại M với 2 trục lần lượt là A và B
Do tam giác OAB vuông cân \(\Rightarrow\widehat{ABO}=45^0\)
\(\Rightarrow\) Tiếp tuyến tạo với trục hoành một góc \(45^0\) hoặc \(135^0\)
\(\Rightarrow\) Hệ số góc k của tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}k=tan45^0=1\\k=tan135^0=-1\end{matrix}\right.\)
Gọi \(M\left(x_0;y_0\right)\) \(\Rightarrow y'\left(x_0\right)=k\Rightarrow\left[{}\begin{matrix}\dfrac{-1}{\left(x_0+1\right)^2}=1\left(vô-nghiệm\right)\\\dfrac{-1}{\left(x_0+1\right)^2}=-1\end{matrix}\right.\)
\(\Rightarrow\left(x_0+1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=2\\x_0=-2\Rightarrow y_0=0\end{matrix}\right.\)
Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(0;2\right)\\M\left(-2;0\right)\end{matrix}\right.\)
- Hàm số đã cho xác định với ∀x ≠ 1.
- Ta có:
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):
- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 ) < 0 , nên có: y ' ( x 0 ) = - 1 .
- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.
Chọn D
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)
b) \(k=\pm1\)
\(y'< 0\forall x\Rightarrow y'=-1\)
làm như trên
c) hoành độ tiếp điểm \(x=\pm2\)
TH x = 2
\(k=-4\)
pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)
TH x = -2
\(k=-\dfrac{4}{9}\)
pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)
Ta có:
- Lấy điểm M(x0;y0) ∈ (C).
- Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
x^2+(y-1)^2=4
=>R=2 và I(0;1)
A(1;1-m) thuộc (C)
y'=4x^3-4mx
=>y'(1)=4-4m
PT Δsẽ là y=(4-m)(x-1)+1-m
Δ luôn đi qua F(3/4;0) và điểm F nằm trong (λ)
Giả sử (Δ) cắt (λ) tại M,N
\(MN=2\sqrt{R^2-d^2\left(I;\Delta\right)}=2\sqrt{4-d^2\left(I;\Delta\right)}\)
MN min khi d(I;(Δ)) max
=>d(I;(Δ))=IF
=>Δ vuông góc IF
Khi đó, Δ có 1 vecto chỉ phương là: vecto u vuông góc với vecto IF=(3/4;p-1)
=>vecto u=(1;4-4m)
=>1*3/4-(4-4m)=0
=>m=13/16
- Ta có :
Lấy điểm M ( x 0 ; y 0 ) ∈ C .
+ Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
Chọn D