Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó:ΔAIB=ΔAIC
b: ta có: ΔACB cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
BI=CI=BC/2=3(cm)
nên AI=4(cm)
REFER
https://hoc24.vn/cau-hoi/bai-1-cho-tam-giac-abc-co-abac-5cm-bc-6cm-goi-i-la-trung-diem-cua-bc-tu-i-ke-im-vuong-goc-voi-ab-m-thuoc-ab-va-in-vuong-goc-voi-ac-n-thuo.5030859246642
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
b: ta có: ΔABC cân tại A
mà AI là trung tuyến
nên AI là đường cao
BI=CI=BC/2=6/2=3(cm)
=>AI=4(cm)
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
DO đó: ΔAIB=ΔAIC
b: Ta có ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
BI=CI=BC/2=3(cm)
=>AI=4(cm)
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
b: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Ta có: I là trung điểm của BC
nên IB=IC=3cm
=>AI=4cm
5:
a: Xét ΔANB và ΔAMC có
AN=AM
góc BAN chung
AB=AC
=>ΔANB=ΔAMC
b: Xét ΔABC có AN/AC=AM/AB
nên MN//BC
c: góc ABN+góc IBC=góc ABC
góc ACM+góc ICB=góc ACB
mà góc ABN=góc ACM và góc ABC=góc ACB
nên góc IBC=góc ICB
=>IB=IC
mà AB=AC
nên AI là trung trực của BC
=>A,I,D thẳng hàng
a: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
Vì I là trung điểm của BC nên IB=IC=BC/2=3cm
=>AI=4cm
b: Xét tứ giác AMIN có \(\widehat{AMI}+\widehat{ANI}+\widehat{MAN}+\widehat{MIN}=360^0\)
nên \(\widehat{MIN}=60^0\)(2)
Xét ΔAMI vuông tại M và ΔANI vuông tại N có
AI chug
\(\widehat{MAI}=\widehat{NAI}\)
Do đó: ΔAMI=ΔANI
Suy ra: IM=IN
=>ΔIMN cân tại I(1)
Từ (1) và (2) suy raΔIMN đều
a) Xét Δ AIB và Δ AIC có :
AI chung } =>Δ AIB = Δ AIC
AB = AC (gt) } (c.c.c)
IB = IC (I là trung điểm BC) }
=> ∠AIB = ∠AIC 92 góc tương ứng) } => ∠AIB = ∠AIC = 90°
Mà : ∠AIB + ∠AIC = 180° } => AI ⊥ BC
Vì I là trung điểm BC nên :
=> IB = IC = BC2BC2 = 6262 = 3 cm
ΔAIB vuông tại I , theo định lí Py-ta-go:
=> AI² = AB² - IB² = 5² - 3² = 25 - 9 = 16 => AI = 4 cm
b) Xét Δ vuông INA và Δ vuông IMA có :
AI chung } => Δ vuông INA = Δ vuông IMA
∠MAI = ∠NAI (2 góc tương ứng) } (c.h-g.n)
=> IM = IN (2canhj tương ứng)
Nếu ∠MAN = 120° , mà IM = IN => Δ IMN là Δ cân
đó