Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))
\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)
Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)
Khi đó :
\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)
Hay \(A\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)
x+y=3=>x=3-y
M=x+xy+y=x+y+xy=3-y+y+(3-y).y
=3+3y-y2=-y2+3y+3=-(y2-3y-3)=\(-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-3\right)=-\left[\left(y-\frac{3}{2}\right)^2-\frac{21}{4}\right]=\frac{21}{4}-\left(y-\frac{3}{2}\right)^2\le\frac{21}{4}\) (với mọi y)
Dấu "=" xảy ra <=> y=3/2 <=> x=3/2
Vậy M đạt GTLN là 21/4 khi x=y=3/2
Ta có : x + y = 1 => x = y - 1
=> P = (y - 1).y - 7 = y2 - y - 7 = (y2 - y - 1/4) - 27/4 = (y - 1/2)2 - 27/4 \(\ge\)-27/4 \(\forall\)y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}y-\frac{1}{2}=0\\x=y-1\end{cases}}\) <=> \(\hept{\begin{cases}y=\frac{1}{2}\\x=\frac{1}{2}-1=-\frac{1}{2}\end{cases}}\)
Vậy Min P = -27/4 <=> x = -1/2 và y = 1/2
Edogawa Conan
Cách em làm ko sai. Nhưng em nhầm từ dòng đầu tiên nhé!
x + y = 1 => x = 1- y
Giải:
Có: \(\left(x-y\right)^2\ge0,\forall x,y\)
<=> \(x^2+2xy+y^2\ge2xy,\forall x,y\)
<=> \(\left(x+y\right)^2\ge4xy,\forall x,y\)
=> \(P=xy-7\le\frac{\left(x+y\right)^2}{4}-7=\frac{1}{4}-7=-\frac{27}{4}\)
"=" xảy ra <=> \(\hept{\begin{cases}\left(x-y\right)^2=0\\x+y=1\end{cases}\Leftrightarrow}x=y=\frac{1}{2}\)
Vậy GTLN của P là -27/4 đạt tại x = y = 1/2.
Bài 1:
$xy+3=x+y$
$\Leftrightarrow xy-x-y+3=0$
$\Leftrightarrow x(y-1)-(y-1)+2=0$
$\Leftrightarrow (x-1)(y-1)+2=0$
$\Leftrightarrow (x-1)(y-1)=-2$
Vì $x,y$ nguyên nên $x-1, y-1$ nguyên. Khi đó:
$(x-1, y-1)=(2, -1), (-2, 1), (1, -2), (-1, 2)$
Đến đây bạn dễ dàng tìm được giá trị $x,y$ thỏa mãn.
Bài 2:
$x+y=3\Rightarrow y=3-x$. Khi đó:
$A=xy=x(3-x)=3x-x^2$
$-A=x^2-3x=(x^2-3x+1,5^2)-1,5^2=(x-1,5)^2-\frac{9}{4}\geq \frac{-9}{4}$
$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$