Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc của hai vật sau va chạm: (M + m)V = mv
=> V = 0,02\(\sqrt{2}\) (m/s)
Tọa độ ban đầu của hệ hai vật x0 = \(\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}\) = 0,04m = 4cm
\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2+\left(M+m\right)}{k}=0,0016\Rightarrow A=0,04m=4cm\)
→ B
Vận tốc của hai vật sau va chạm: \(\left(M+m\right)V=mv\)
\(\rightarrow V=0,02\sqrt{2}\left(m\text{ /}s\right)\)
Tọa độ ban đầu của hệ hai vật: \(x_0=\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}=0,04m=4cm\)
\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2\left(M+m\right)}{k}=0,0016\) \(\rightarrow A=0,04m=4cm\)
Đáp án B
Đáp án A
+ Độ giãn của lò xo tại vị trí cân bằng O của hệ hai vật Δ l 0 = 2 m g k = 5 cm, kéo hệ xuống dưới vị trí cân bằng 10 cm rồi thả nhẹ, vậy hệ sẽ dao động với biên độ A = 10 cm.
+ Ta có thể chia quá trình chuyển động của hệ thành các giai đoạn sau:
Giai đoạn 1: Hệ hai vật dao động điều hòa quanh vị trí cân bằng O.
· Tốc độ của hai vật khi đi qua vị trí cân bằng v m a x = ω A = k 2 m A = 100 2 cm/s.
Giai đoạn 2: Chuyển động của hai vật sau khi đi qua vị trí cân bằng O.
· Khi đi qua vị trí cân bằng O, tốc độ của vật A sẽ giảm, vật B sẽ chuyển động thẳng đứng lên trên với vận tốc ban đầu bằng v m a x , do có sự khác nhau về tốc độ nên hai vật không dao động chung với nhau nữa.
· Tuy nhiên sự kiện trên chỉ diễn ra rất ngắn, vật A ngay sau đó sẽ dao động quanh vị trí cân bằng mới ở phía trên O một đoạn 2,5 cm do đó ngay lập tức tốc độ của A sẽ tăng, trong khi B lại giảm → hệ hai vật lại được xem như ban đầu và dao động quanh vị trí cân bằng O.
Giai đoạn 3: Chuyển động của hai vật sau khi dây bị chùng
· Phương trình định luật II cho vật m 2 : m 2 g − T = m 2 a , khi T = 0 dây chùng → x = − g ω 2 = − 5 cm. Lúc này v A = 3 2 v m a x = 50 6 cm/s.
· Vật dao A dao động quanh vị trí cân bằng mới O' cách vị trí cân bằng cũ một đoạn Δ l = m g k = 2 , 5 cm với biên độ A ' = 2 , 5 2 + 50 6 20 2 = 6 , 61 cm.
Từ các lập luận trên ta thấy rằng khi A dừng lại lần đầu tiên ứng với vị trí biên trên, khi đó quãng đường vật đi được sẽ là S = 10 + 5 + (6,61 – 2,5) = 19,1 cm.
\(A=l'=\frac{mg}{k}=\frac{g}{\omega^2}\)
\(v_0=A\omega\Rightarrow\frac{g}{\omega}=v_0\Rightarrow\omega=\frac{g}{v_0}\)
\(\Rightarrow A=\frac{g}{\omega^2}=\frac{v^2_0}{g}=6,25\left(cm\right)\)
Đáp án A
Sau khi kéo vật B xuống dưới 20 cm và thả nhẹ thì hệ dao động với biên độ 20cm.
Vật B đi lên được h1 = 30 cm thì không chịu tác dụng của lực đàn hồi của lò xo nữa. Khi đó vận tốc của B có độ lớn:
Vật B đi lên thêm được độ cao h2 v 2 2 g = 3 20 m = 15 c m
Vật B đổi chiều chuyển động khi lên được độ cao h = h1 + h2 = 45cm = 0,45m
Khoảng thời gian từ khi vậ B tuột khỏi dây nối đến khi rơi đến vị trí thả ban đầu là t= 2 h g = 0 , 09 = 0 , 30 s
Gọi biên độ dao động là A.
Độ dãn của lò xo khi vật ở VTCB là: \(\Delta\ell_0=\dfrac{mg}{k}\)
Độ dãn cực đại của lò xo là: \(\Delta\ell_0+A=10cm=0,1m\)
Lực đàn hồi cực tiểu là: \(k(\Delta\ell_0-A)=0,8\)
\(\Rightarrow k(\Delta \ell_0+\Delta\ell_0-0,1)=0,8\)
\(\Rightarrow k(2\Delta \ell_0-0,1)=0,8\)
\(\Rightarrow k(2\dfrac{mg}{k}-0,1)=0,8\)
\(\Rightarrow2.mg-0,1.k=0,8\)
\(\Rightarrow2.0,24.10-0,1.k=0,8\)
\(\Rightarrow k=40(N/m)\)
Lực mà lò xo tác dụng lên vật khi lò xo dãn 5cm là lực đàn hồi của lò xo và bằng: \(F=k.\Delta\ell=40.0,05=2(N)\)
Đáp án A
Ban đầu hệ hai vật dao động với biên độ:
A = 9,66 – 4= 4 2 c m ;
Xét các lực tác dụng vào vật B: mBg – T = mBa =>
T = mB(g – a)= mB (g + ω 2 x )
Dây còn căng khi T ≥ 0
Vậy cả 2 vật cùng chuyển động từ biên dương đến vị trí có li độ x = - 4 hết thời gian
Tại x = - 4 cm, 2 vật có cùng vận tốc
Từ x = -4 cm thì vật mA đi lên chậm hơn mB nên dây sẽ trùng.
Khi đó mA nhận OA làm VTCB mới, cách vị trí đoạn ∆ l O A = 4 3 c m nên mA dao động với biên độ
Thời gian mA đi từ x1 đến biên âm của nó là :
Thời gian cần tìm là t = t1 + t2 = 0,1885 s