Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bài 16
Khai triển:
\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)
Cụ thể có:
\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)
Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)
Phương án D.
Bài 18:
Vì \(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)
\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)
(không có đáp án đúng?)
Câu 36
Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)
Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)
Đáp án C
47. y=x ĐA: D
48. A(-4;0); B(0;4); C(x; 3)
\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)
A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D
49.A(2;-2); B(3;1); C(0;2)
\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)
=>Tam giác vuông cân=> ĐA:C
51. ĐA:D
52: A(-1;3); B(-3;-2); C(4;1)
\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)
ĐA: C
Câu 22)
Bạn dùng nguyên hàm từng phần thôi
Ta có \(I=\int x(1-x)e^{-x}dx=(ax^2+bx+c)e^{-x}\)
Đặt \(\left\{\begin{matrix} u=1-x\\ dv=xe^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=\int xe^{-x}dx\end{matrix}\right.\)
Tại $v$ cũng áp dụng nguyên hàm từng phần, suy a \(v=-xe^{-x}-e^{-x}\)
Do đó \(I=(-xe^{-x}-e^{-x})(1-x)-\int (x+1)e^{-x}dx\)
\(I=(x^2-1)e^{-x}-v-\int e^{-x}dx\)
\(I=(x^2-1)e^{-x}-(-xe^{-x}-e^{-x})-(-e^{-x})\)
\(I=e^{-x}(x^2+x+1)+c\)
Do đó \(a=b=c=1\rightarrow a+b+c=3\)
Câu 23:
Câu này y hệt như câu 22. Bạn chỉ cần tìm $a,b,c$ sao cho
\(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(ax^2+bx+c)\sqrt{2x-3}\)
Gợi ý: Đặt \(\sqrt{2x-3}=t\), ta sẽ tìm được \(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(4x^2-2x+1)\sqrt{2x-3}\)
\(\Rightarrow a=4,b=-2,c=1\). Đáp án C
Câu 25:
Đạo hàm của $f(x)=\frac{1}{2x-1}$ thì nghĩa là \(f(x)=\int\frac{1}{2x-1}dx\)
\(\Leftrightarrow f(x)=\frac{1}{2}\int\frac{d(2x-1)}{2x-1}=\frac{1}{2}\ln|2x-1|+c\)
Có \(f(1)=1\leftrightarrow c=1\). Do đó \(f(x)=\frac{1}{2}\ln|2x-1|+1\rightarrow f(5)=\frac{1}{2}\ln 9+1=\ln 3+1\)
Đáp án D
bạn chỉ cần tách x4-1 thành (x2-1)(x2+1),rồi đặt x2=t là ok
Câu 17:
\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)
\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)
Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)
\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)
Vì \(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)
\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)
Câu 11)
Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)
\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)
\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)
\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)
Đáp án C
Câu 20)
Ta có:
\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)
\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)
\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)
Đáp án A.
nhờ người ta giải mà cười hihi
em thì bó tay chấm chữ com vào ăn
TXĐ: D=R
\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)
\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)
Đặt t = \(3^{x^2+x-1}\) (t>0)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)
Câu 3:
+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)
\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)
Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)
+)Sử dụng phương pháp tọa độ hóa
Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az
\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)
\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)
Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau
\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)
Câu 5:
Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')
Từ I kẻ IH vuông góc với AA' tại H
suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'
Tính được IA=a và IA'=\(a\sqrt{3}\)
Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:
\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)
em cầ hỏi c 36,37,39,40 ạ