Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
nen AH=DE
c: Để ADHE là hình vuông thì AH là phân giác của góc DAE
=>ΔABC cân tại A
=>AB=AC
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác ADEN có
NE//AD
NE=AD
Do đó: ADEN là hình bình hành
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Ta có: ADHE là hình chữ nhật
=>AD//HE và AD=HE
Ta có: AD//HE
F\(\in\)HE
Do đó: AD//HF
Ta có: AD=HE
HE=EF
Do đó: AD=EF
Xét tứ giác ADEF có
AD//EF
AD=EF
Do đó: ADEF là hình bình hành
c: ta có: AEHD là hình chữ nhật
=>\(\widehat{AED}=\widehat{AHD}\)
mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{ACB}\right)\)
nên \(\widehat{AED}=\widehat{ABC}\)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MC
=>\(\widehat{MAC}=\widehat{MCA}\)
Ta có: \(\widehat{AED}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM\(\perp\)ED
mà ED//AF(ADEF là hình bình hành)
nên AM\(\perp\)AF
a) Tứ giác ADHE là hình chữ nhật.
- Vì AD vuông góc với AB và HE vuông góc với AC (do HD và HE lần lượt là đường cao của tam giác ABC), nên ADHE là hình chữ nhật.
b) Lấy điểm F sao cho E là trung điểm của HF.
- Vì E là trung điểm của HF, nên EF = FH.
- Ta cũng có HE = EA (do E là trung điểm của HF và EA).
- Từ đó, ta có EF = FH = HE = EA.
- Vậy, tứ giác ADEF có các cạnh đối diện bằng nhau, là đặc điểm của hình bình hành.
c) Gọi M là trung điểm của BC. Chúng ta cần chứng minh AM vuông góc với AF.
- Ta biết rằng E là trung điểm của HF (theo phần b).
- Vì M là trung điểm của BC, nên BM = MC.
- Từ đó, ta có AM = BM = MC.
- Vì EF = FH = HE = EA (theo phần b), nên tứ giác ADEF là hình bình hành.
- Do đó, ta có AF song song với DE.
- Vì AM = MC và AF song song với DE, nên AM vuông góc với AF.
Vậy, ta đã chứng minh được AM vuông góc với AF.
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>AD//HE và AD=HE; AE//HD và AE=HD
AE=HD
A\(\in\)EF
Do đó: HD//AF
AE=HD
AE=AF
Do đó: HD=AF
Xét tứ giác AHDF có
AF//DH
AF=DH
Do đó: AHDF là hình bình hành
c:
AC và AF là hai tia đối nhau
mà E\(\in\)AC
nên AE và AF là hai tia đối nhau
=>A nằm giữa E và F
mà AE=AF
nên A là trung điểm của EF
Xét tứ giác EBFM có
A là trung điểm chung của EF và BM
nên EBFM là hình bình hành
Hình bình hành EBFM có EF\(\perp\)BM
nên EBFM là hình thoi
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
DH//AF
DH=AF(=AE)
Do đó: AFDH là hình bình hành