Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
Xét tam giác AHB và tam giác DBH có:
AH = DB (gt)
AHB = DBH (= 900)
BH chung
=> Tam giác AHB = Tam giác DBH (c.g.c)
=> ABH = DHB (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DH
AH _I_ BC
BD _I_ BC
=> AH // BD
Xét tam giác HAO và tam giác BDO có:
OHA = OBD (= 900)
HA = BD (gt)
HAO = BDH (2 góc so le trong, HA // BD)
=> Tam giác HAO = Tam giác BDO (g.c.g)
=> OA = OD (2 cạnh tương ứng)
OH = OB (2 cạnh tương ứng)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH và DA=DH
b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔDAK=ΔDHC
Suy ra: DK=DC và AK=HC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
d: Ta có: BA=BH
nên B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
nên D nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
xét tg ABD và tg HBD có:
\(\widehat{ABD}=\widehat{HBD}\)
\(\widehat{DAB}=\widehat{BHD}\left(=90\cdot\right)\)
chung BD
suy ra tg ABD = tg HBD ( ch-gn )
=) AB=BH
xét 2 tam giác BAD và tam giác BHD (góc A= góc H= 90 độ)
ta có: cạnh huyền BD chung
góc ABD= góc HBD (vì BD là phân giác góc B)
=>tam giác BAD=tam giác BHD(cạnh huyền-góc nhọn)
<=>BA=BH (2 cạnh tương ứng)