K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2015

câu 1: Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh. ( 0,25 điểm).
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.

câu 2: Mỗi đường thẳng cắt 2005 đường thẳng còn lại tạo nên 2005 giao điểm. Mà có 2006 đường
thẳng ⇒ có : 2005x 2006 giao điểm. Nhưng mỗi giao điểm được tính 2 lần ⇒ số giao điểm thực tế là:
(2005x 2006):2 = 1003x 2005 = 2011015 giao điểm.

2 tháng 5 2017

bài này bạn lấy ở đâu mà khó thế

20 tháng 12 2015

Trong câu hỏi tương tự có bài của bạn Minh Triều đó bạn !

9 tháng 3 2017

NHANH NÀO

30 tháng 5 2016

Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.

Câu 1: (2 điểm) Cho biểu thức:                                                 a, Rút gọn biểu thứcb, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.Câu 2: (1 điểm)Tìm tất cả các số tự nhiên có 3 chữ số  sao cho Câu 3: (2 điểm)a. Tìm n để n2 + 2006 là một số chính phươngb. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên...
Đọc tiếp

Câu 1: (2 điểm) Cho biểu thức:  

                                               

a, Rút gọn biểu thức

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

Tìm tất cả các số tự nhiên có 3 chữ số  sao cho 

Câu 3: (2 điểm)

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

a. Cho a, b, n thuộc N*. Hãy so sánh 

b. Cho . So sánh A và B.

Câu 5: (2 điểm)

       Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

       Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

1
19 tháng 1 2016

loạn mất, bạn đăng từng câu đc ko

29 tháng 5 2017

2: Lập dãy số .

Đặt B1 = a\(^1\)

B2 = a\(^1\) + a\(^2\) .

...................................

B10 = a\(^1\) + a\(^2\) + ... + a\(^{10}\) .

Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:

Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư thuộc { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n)=> ĐPCM.

3.Mỗi đường thẳng cắt 2005 đường thẳng còn lại tạo nên 2005 giao điểm. Mà có 2006 đường thẳng  có

: 2005x 2006 giao điểm. Nhưng mỗi giao điểm được tính 2 lần =>số giao điểm thực tế là:

(2005x 2006):2 = 1003x 2005 = 2011015 giao điểm.

Chào mừng bn đến vs hoc24!

29 tháng 5 2017

Cảm ơn bn!

OLM ơi giúp mình với. Bí lắm rồi nè!!!Câu 1: a. Tìm n để n2 + 2006 là một số chính phươngb. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay hợp sốCâu 2: Cho 2015 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúngCâu 3: Chứng minh rằng: 1028 + 8 chia hết cho 72Câu 4: Cho 20 điểm, trong đó có a điểm...
Đọc tiếp

OLM ơi giúp mình với. Bí lắm rồi nè!!!

Câu 1: 

a. Tìm n để n2 + 2006 là một số chính phương

b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay hợp số

Câu 2: Cho 2015 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng

Câu 3: Chứng minh rằng: 1028 + 8 chia hết cho 72

Câu 4: Cho 20 điểm, trong đó có a điểm thẳng hàng. Cứ 2 điểm, ta vẽ một đường thẳng. Tim a, biết vẽ được tất cả 170 đường thẳng

Câu 5:

a. Tìm hai chữ số tận cùng của các số sau:       2100; 71991

b. Tìm bốn chữ số tận cùng của số sau:             51992

Câu 6: Cho S = 30 + 32 + 34 + 36 +.....+32002

a. Tính S

b. Chứng minh S chia hết cho 7

Câu 7: Tìm số tự nhiên n và chữ số a biết rằng: 1 + 2 + 3 +........+ n = aaa

 

0