Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đưa quá nhiều bài 1 lúc nên người ta giải được cũng chẳng ai muốn giải đâu, vì nhìn vào đã thấy ngộp rồi. Kinh nghiệm là muốn được giải quyết nhanh thì chỉ đăng 2-3 bài 1 lúc thôi
Bài 1:
a/ \(11-\left(2x+3\right)=3\left(x-4\right)\)
\(\Leftrightarrow11-2x-3=3x-12\)
\(\Leftrightarrow5x=20\)
\(\Rightarrow x=4\)
b/ \(5\left(2x-3\right)-4\left(5x-7\right)=19-2x\)
\(\Leftrightarrow10x-15-20x+28=19-2x\)
\(\Leftrightarrow8x=-6\)
\(\Rightarrow x=-\frac{3}{4}\)
c/
\(\frac{x}{3}-\frac{2x+1}{2}=\frac{x}{6}-x\)
\(\Leftrightarrow2x-3\left(2x+1\right)=x-6x\)
\(\Leftrightarrow x=3\)
d/
\(\frac{5x+2}{6}-\frac{8x-1}{3}=\frac{4x+2}{5}-5\)
\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow79x=158\)
\(\Rightarrow x=2\)
e/
\(\frac{2-6x}{5}-\frac{2+3x}{10}=7-\frac{6x+3}{4}\)
\(\Leftrightarrow4\left(2-6x\right)-2\left(2+3x\right)=140-5\left(6x+3\right)\)
\(\Leftrightarrow0=-121\) (vô lý)
Vậy pt vô nghiệm
f/
\(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
\(\Leftrightarrow3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow6x=-5\)
\(\Rightarrow x=-\frac{5}{6}\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)
\(3x^2+10x-8=5x^2-2x+10\)
\(3x^2-5x^2+10x+2x-8-10=0\)
\(-2x^2+12x-18=0\)
\(x^2-6x+9=0\)
\(\left(x-3\right)^2=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
b) \(\frac{x^2-x-6}{x-3}=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Bài 1:
a/ \(x\ne1;2\)
\(\frac{x-2}{\left(x-1\right)\left(x-2\right)}-\frac{7\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Leftrightarrow x-2-7x+7+1=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Rightarrow x=1\) (loại)
Vậy pt vô nghiệm
b/ \(x\ne\frac{3}{2}\)
\(\frac{2x+3}{2x-3}-\frac{3}{2\left(2x-3\right)}-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{10\left(2x+3\right)}{10\left(2x-3\right)}-\frac{15}{10\left(2x-3\right)}-\frac{4\left(2x-3\right)}{10\left(2x-3\right)}=0\)
\(\Leftrightarrow20x+30-15-8x+12=0\)
\(\Leftrightarrow12x+27=0\)
\(\Rightarrow x=-\frac{9}{4}\)
c/ \(x\ne\pm1\)
\(\frac{x+1}{x-1}-\frac{4}{x+1}+\frac{3-x^2}{x^2-1}=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}+\frac{3-x^2}{x^2-1}=0\)
\(\Leftrightarrow x^2+2x+1-4x+4+3-x^2=0\)
\(\Leftrightarrow-2x+8=0\)
\(\Rightarrow x=4\)
Bài 1:
d/\(x\ne\pm3\)
\(\frac{x-1}{x+3}-\frac{x}{x-3}+\frac{7x-3}{x^2-9}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{x^2-9}-\frac{x\left(x+3\right)}{x^2-9}+\frac{7x-3}{x^2-9}=0\)
\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)
\(\Rightarrow0=0\)
Vậy pt có vô số nghiệm \(x\ne\pm3\)
e/ \(x\ne\pm1\)
\(\frac{1}{x+1}+\frac{2}{x^2\left(x-1\right)-\left(x-1\right)}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{x^2-1}=0\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3}{\left(x-1\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\frac{2}{\left(x+1\right)\left(x-1\right)^2}+\frac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Leftrightarrow x^2-2x+1+2+3x-3=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\left(l\right)\end{matrix}\right.\)
thansk