Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(2-3x\right)+\left(3x^2-x^2\right):x\)
\(=2x-3x^2+3x^2-x\)
\(=x\)
\(2x\left(x-3y\right)-\left(8x^3y-12x^2y^2\right):2xy\)
\(=2x^2-6xy-4x^2+6xy\)
\(=-2x^2\)
Bài 1.
x = 14
=> 13 = x - 1 ; 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1
Thế vào N(x) ta được :
x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= -x = -14
Bài 2.
a) ( 1 - x - 2x3 + 3x2 )( 1 - x + 2x3 - 3x2 )
= [ ( 1 - x ) - ( 2x3 - 3x2 ) ][ ( 1 - x ) + ( 2x3 - 3x2 ) ]
= ( 1 - x )2 - ( 2x3 - 3x2 )2
= 1 - 2x + x2 - [ ( 2x3 )2 - 2.2x3.3x2 + ( 3x2 )2 ]
= x2 - 2x + 1 - ( 4x6 - 12x5 + 9x4 )
= x2 - 2x + 1 - 4x6 + 12x5 - 9x4
= -4x6 + 12x5 - 9x4 + x2 - 2x + 1
b) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)
\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)
\(=xy^2-\dfrac{x}{3}+1\)
b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)
\(=2\left(x+y\right)^2\)
c) \(\dfrac{8x^3+27y^3}{2x+3y}\)
\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)
\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)
\(=4x^2-6xy+9y^2\)
d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)
\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)
\(=16x^2y-4y^3+2\)
giải hộ câu c, d và f thôi nhá, mấy câu kia biết là rồi
a: Ta có: \(x\left(2-3x\right)+\left(3x^3-x^2\right):x\)
\(=2x-3x^2+3x^2-x\)
=x
b: Ta có: \(2x\left(x-3y\right)-\left(8x^3y-12x^2y^2\right):2xy\)
\(=2x^2-6xy-4x^2+6xy\)
\(=-2x^2\)