Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khi rút gọn 232323/292929 và 2323/2929 thì được 23/99
Vậy ta kết luận 3 phân số trên bắng nhau
Tk đi rồi mình giải tiếp cho
ta co \(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
=\(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)
=\(5.\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+\frac{21-16}{16.21}+\frac{26-21}{21.26}+\frac{31-26}{26.31}\right)\)
=\(5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
=\(5.\left(1-\frac{1}{31}\right)\)
=\(5.\frac{30}{31}\)
=\(\frac{150}{31}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{6}{31}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+\frac{5}{26.31}\right)\)
\(=5.\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(1-\frac{1}{31}\right)=\frac{150}{31}\)
a) 2A= 1+1/2^2+1/2^3+...+1/2^2015+1/2^2016
2A-A=(1+1/2+1/2^2+...+1/2^2015+1/2^2016)-(1/2+1/2^2+...+1/2^2016+1/2^2017)
A= 1-1/2^2017
b) B=5.(5/1.6+5/6.11+...+5/26.31)
B=5.(1/5-1/6+1/6-1/11+1/11...-1/26+1/26-1/31)
B= 5.(1/5-1/31)
B=5.26/155
B=26/31
99900.1000=99900000
=> (27425-27).1000=27425425-27425
=27398.1000=27398000
vậy hai phân số này bằng nhau
a, 1+6+11+16+...+46+51
Số số hạng là : (51-1):5+1 = 11 ( số )
Tổng là : (51+1).11:2=286
b, Đặt A = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+\dfrac{5^2}{16.21}+\dfrac{5^2}{21.26}+\dfrac{5^2}{26.31 } \)
\(\dfrac{1}{5}A=\) \(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\)
\(\dfrac{1}{5}A=\) \(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=1-\dfrac{1}{31}\)
\(\dfrac{1}{5}A=\dfrac{30}{31}\)
\(A=\dfrac{30}{31}:\dfrac{1}{5}=\dfrac{150}{31}\)
Vậy..
Ta có :
\(S=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}\)
\(S=5\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}\right)\)
\(S=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(S=5\left(1-\frac{1}{26}\right)\)
\(S=5.\frac{25}{26}\)
\(S=\frac{125}{26}\)
Vậy \(S=\frac{125}{26}\)
Chúc bạn học tốt ~
\(S=\frac{5^2}{1\cdot6}\cdot\frac{5^2}{6\cdot11}\cdot\frac{5^2}{11\cdot16}\cdot\frac{5^2}{16\cdot21}\cdot\frac{5^2}{21\cdot26}\)
\(=5\cdot\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+\frac{5}{11\cdot16}+\frac{5}{16\cdot21}+\frac{5}{21\cdot26}\right)\)
\(=5\cdot\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}\right)\)
\(=5\cdot\left(1-\frac{1}{26}\right)\)
\(=5\cdot\frac{25}{26}\)
\(=\frac{125}{26}\)
Câu 1:
Giả sử \(\frac{3}{5}< \frac{3+m}{5+m}\)
=) \(3.\left(5+m\right)< 5.\left(3+m\right)\)
=) \(15+3m< 15+5m\) ( Đúng vì \(15=15\)và \(3m< 5m\)) =) Điều giả sử đúng
=) \(\frac{3}{5}< \frac{3+m}{5+m}\)
* Từ điều trên ta suy ra : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Và nếu \(\frac{a}{b}>1\)=) \(\frac{a}{b}>\frac{a+m}{b+m}\)
Câu 2 :
= \(5.\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
= \(5.\left(\frac{1}{1}-\frac{1}{31}\right)\)= \(5.\frac{30}{31}=\frac{150}{31}\)
=> Với mọi số tự nhiên m ( như m\(\ne\)0 ) thì \(\frac{3}{5}< \frac{3+m}{5+m}\)
\(\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(=5\left(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{26.31}\right)\)
\(=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5\left(1-\frac{1}{31}\right)\)
\(=5.\frac{30}{31}\)
\(=\frac{150}{31}\)
Đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+\frac{5^2}{16.21}+\frac{5^2}{21.26}+\frac{5^2}{26.31}\)
\(\Rightarrow A=\frac{5^2}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+\frac{1}{26}-\frac{1}{31}\right)\)
\(\Rightarrow A=5.\left(1-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)