\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

mỗi tỉ số đã cho đều bớt đi 1 ta được :

\(\frac{2a+b+c+d}{a}\) - 1 = \(\frac{a+2b+c+d}{b}\)  - 1 = \(\frac{a+b+2c+d}{c}\)  - 1 = \(\frac{a+b+c+2d}{d}\)  - 1 

\(\frac{a+b+c+d}{a}\)   = \(\frac{a+b+c+d}{b}\)  = \(\frac{a+b+c+d}{c}\)  = \(\frac{a+b+c+d}{d}\)  

- Nếu a+b+c+d \(\ne\)  0 thì a = b = c =d lúc đó M = 1 + 1 + 1 + 1 = 4

- Nếu a + b + c + d = 0 thì a + b = - ( c + d ) ; b + c = - ( d + a )

                                            c + d = - ( a + b ) ; d + a = - ( b + c )

Lúc đó : M= (-1 ) + (-1) + (-1) + (-1) = -4

25 tháng 6 2016

Lấy 1 điểm O tùy ý , Qua O vẽ 9 đường thẳng lần lượt song song với 9 đường thẳng đã cho 9 đường thẳng qua O tạo thành 18 góc không có điểm trong chung , mỗi góc này tương ứng bằng góc giữa 2 đường thẳng tronh số 9 đường thẳng đã cho . Tổng số đo của 18 góc đỉnh O là 360 độ do đó ít nhất có một góc nhỏ hơn 360 : 18 = 20 , từ đó suy ra ít nhất cũng có hai đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20 độ

 

30 tháng 3 2016

Câu 1 bạn cộng vào A 4 đơn vị còn mỗi phân thức bên vế phải thì cộng mỗi cái bàng một đơn vị, sau đó sẽ có 2 phân thức tử bằng a+b và 2 phân thức tử bằng c+d, bạn đặt ra ngoài làm nhân tử chung, bên trong ngoặc sẽ là 1/a+b + 1/b+c, bạn áp dụng bất đẳng thức 1/a + 1/b >= 4/a+b sẽ được bên trong ngoặc là 4/a+b+c+d, nhân 2 cái ở ngoài vào, rút gọn phân thức đi sẽ được kết quả là A+4 >= 4 nên A>=0

25 tháng 7 2020

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

30 tháng 3 2022

sao cái dấu tương đương thứ 4 bạn bỏ c-a v ạ

 

23 tháng 2 2018

Mình không chắc câu này lắm nhưng thôi giải dùm bạn vậy :((

\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)

\(\Leftrightarrow\)\(1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)

\(\Leftrightarrow\)\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)

\(\Leftrightarrow\)\(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\)\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\)\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\)\(b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)\)

\(\Leftrightarrow\)\(abc-acd+bd^2-b^2d=0\)

\(\Leftrightarrow\)\(\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow\)\(ac-bd=0\Leftrightarrow ac=bd\left(b\ne d\right)\)

Vậy bạn tự kết luận nha

14 tháng 10 2018

\(\Leftrightarrow1+\frac{a}{a+b}+1+\frac{b}{b+c}+1+\frac{c}{c+d}+1+\frac{d}{d+a}=6\)

\(\Leftrightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{d}{d+a}=2\)

\(\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(b+c\right)-b\left(a+b\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(d+a\right)-d\left(c+d\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)+d\left(a-c\right)\left(a+b\right)\left(b+c\right)=0\)

\(\Leftrightarrow b\left(c-a\right)\left(c+d\right)\left(d+a\right)-d\left(c-a\right)\left(a+b\right)\left(b+c\right)=0\)

\(\Leftrightarrow b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left(bc+bd\right)\left(d+a\right)-\left(da+db\right)\left(b+c\right)=0\)

\(\Leftrightarrow bcd+bca+bd^2+bda-abd-adc-db^2-dbc=0\)

\(\Leftrightarrow bca-acd+bd^2-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac-bd=0\)

\(\Leftrightarrow ac=bd\)

\(\Leftrightarrow\left(ac\right)^2=abcd\)\(\left(đpcm\right)\)

dành cho người không hiểu bài trên 

                                                                           \(#huybip#\)

23 tháng 2 2018

NGUYỄN CẢNH LINH QUÂN 

chẳng nhẽ CTV ko đc hỏi!

não có vấn đề à bn :))

23 tháng 2 2018

Thế chú học có hơn ai không mà sao chú nói vậy đấy ngon làm đi 

25 tháng 7 2020

Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

Do a<>c:

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

Phá ngoặc:

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

Phân tích đa thức thành nhân tử:

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

Do b<>d:

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

Thỏa mãn.

9 tháng 3 2021

\(\orbr{\begin{cases}\\\end{cases}}\)

25 tháng 2 2017

Bạn đưa về như họ là đc , mk thử giúp bạn

(2a + b)/(a+b) = (a+a+b)/(a+b) = a/(a+b) + (a+b)/(a+b) = a/(a+b) + 1

Ở câu hỏi tương tự người ta đưa về dạnh này

24 tháng 2 2017

bạn xem câu hỏi tương tự ý 

25 tháng 7 2020

Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

Do a<>c:

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

Phá ngoặc:

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

Phân tích đa thức thành nhân tử:

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

Do b<>d:

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)