Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+24x+19=0\)
\(\Leftrightarrow5x^2+5x+19x+19=0\)
\(\Leftrightarrow5x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(5x+19\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\5x+19=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{19}{5}\end{cases}}\)
Vậy \(S=\left\{-1;-\frac{19}{5}\right\}\)
Tìm nghiệm của phương trình
5x^2 + 24x + 19 = 0
5x^2 + 5x + 19x + 19 = 0
5x(x+1 ) ( 5x + 19 ) = 0
x + 1 = 0
5x + 19 = 0
x = -1
x = -19/5
vậy S = { -1 ; -19/5 }
a. \(\sqrt{4x}+\sqrt{x}=2\Leftrightarrow2\sqrt{x}+\sqrt{x}=2\Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)
b. \(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=-1\end{cases}}\\x\ge2\end{cases}}\Leftrightarrow x=2\)\(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)=0\\x\ge2\end{cases}}\Leftrightarrow x=2\)
c.\(\sqrt{x^2-2x}+\sqrt{2x^2+4x}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x+2x^2+4x+2\sqrt{x^2-2x}.\sqrt{2x^2+4x}=4x^2\end{cases}}\)
\(\Rightarrow x^2-2x=2\sqrt{x^2-2x}.\sqrt{2x^2+4x}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-2x}=0\\\sqrt{x^2-2x}=2\sqrt{2x^2+4x}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\text{ hoặc }x=2\\x^2-2x=8x^2+16x\end{cases}\Leftrightarrow}\)hoặc x=0 hoặc x=2 hoặc x= -18/7
Kết hợp điều kiện ta có : \(x=0\text{ hoặc }x=2\)
d. Điều kiện \(x\ge3\) ta có :
\(\sqrt{x^2+2x-15}=\sqrt{x-3}+\sqrt{x^2-3x}\Leftrightarrow x^2+2x-15=x^2-2x-3+2\sqrt{x-3}\sqrt{x^2-3x}\)
\(\Leftrightarrow2x-6=\sqrt{x-3}.\sqrt{x^2-3x}\Leftrightarrow4\left(x-3\right)^2=\left(x-3\right)\left(x^2-3x\right)\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
a) Vì \(\left|A+B\right|\ge0\)và \(\left|A\right|+\left|B\right|\ge0\)
Bình phương 2 vế ta có:
\(\left|A+B\right|^2\le\left(\left|A\right|+\left|B\right|\right)^2\)
\(\Leftrightarrow A^2+2AB+B^2\le A^2+2\left|AB\right|+B^2\)
\(\Leftrightarrow2\left|AB\right|\ge2AB\)\(\Leftrightarrow\left|AB\right|\ge AB\)(1)
Theo tính chất của dấu giá trị tuyệt đối thì \(\left|AB\right|\ge AB\)
\(\Rightarrow\)(1) luôn đúng \(\Rightarrow\left|A+B\right|\le\left|A\right|+\left|B\right|\)( đpcm )
Dấu " = " xảy ra \(\Leftrightarrow AB\ge0\)
b) \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x+2\right|+\left|x-3\right|=\left|x+2\right|+\left|3-x\right|\)
Áp dụng kết quả phần a ta có:
\(M=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=\left|5\right|=5\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x+2\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\Leftrightarrow-2\le x\le3\)
TH2: \(\hept{\begin{cases}x+2< 0\\3-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( vô lý )
Vậy \(minM=5\)\(\Leftrightarrow-2\le x\le3\)
a) Do 2 vế của BĐT không âm nên ta có:
\(\left|A+B\right|\le\left|A\right|+\left|B\right|\Leftrightarrow\left|A+B\right|^2\le\left(\left|A\right|+\left|B\right|\right)^2\)
\(\Leftrightarrow A^2+B^2+2AB\le A^2+B^2+2\left|AB\right|\Leftrightarrow AB\le\left|AB\right|\) (LUÔN ĐÚNG)
Dấu '=' xảy ra <=> \(AB\ge0\)
Câu 31:
Ta có: \(4=2x+xy\ge2\sqrt{2x.xy}=2\sqrt{2}\sqrt{A}\)
suy ra \(A\le\frac{4^2}{2^2.2}=2\).
Dấu \(=\)khi \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\).
Câu 10:
ĐK: \(x\inℝ\).
Ta có:
\(VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)
\(=\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+16}\)
\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\)
\(\ge\sqrt{4}+\sqrt{16}=2+4=6\).
Dấu \(=\)khi \(x+1=0\Leftrightarrow x=-1\).
\(VP=5-2x-x^2=6-\left(x^2+2x+1\right)=6-\left(x+1\right)^2\le6\)
Dấu \(=\)khi \(x+1=0\Leftrightarrow x=-1\).
Do đó nghiệm của phương trình đã cho là \(x=-1\).
Áp dụng BDT Bunhiacopki, ta có
\(1^2\le\left(x+3y\right)^2\le\left(1^2+3^2\right)\left(X^2+Y^2\right)\)
\(\Rightarrow\)\(X^2+Y^2\)\(\ge\frac{1}{10}\).Dấu bằng xảy ra
\(\Leftrightarrow x=3y\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{10}\\y=\frac{1}{10}\end{cases}}\)
giải phương trình :
- x2 – 3x + 2 + |x – 1| = 0
1)Nếu x-1 >= 0 thì x>=1
=>x2 – 3x + 2 + |x – 1| = 0
<=>x2-3x+2+x-1=0
<=>x2-2x+1=0
<=>(x-1)2=0
<=>x-1=0
<=>x=1
Vậy S={1}
2 ) ĐKXĐ:
x(x-2)≠0
<=>x≠0 và x-2≠0
<=>x≠0 và x≠2
\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}-\frac{2}{x\left(x-2\right)}=0\)
=>x(x+2)-(x-2)-2=0
<=>x2+2x-x+2-2=0
<=>x2+x=0
<=>x(x+1)=0
<=>x=0 (ko thỏa ĐKXĐ) hoặc x+1=0
<=>x=-1
Vậy S={-1}
a, \(x-5=1\Leftrightarrow x=6\left(tmđk\right)\)
b, \(M=2017-\left[49-\left(\sqrt{27}+\sqrt{3}\right)^2\right]\)
\(=2017-\left(49-27-2\sqrt{81}-3\right)\)
\(=2017-\left(49-27-18-3\right)=2016\)