Câu 1:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

a, \(x-5=1\Leftrightarrow x=6\left(tmđk\right)\)

b, \(M=2017-\left[49-\left(\sqrt{27}+\sqrt{3}\right)^2\right]\)

\(=2017-\left(49-27-2\sqrt{81}-3\right)\)

\(=2017-\left(49-27-18-3\right)=2016\)

Bài 1. Bài 2:  Với a/ Rút gon b/ Với giá tri nào của x thì P có giá tri bằng c/ Tính giá tri của P tại Bài 3. (2 điểm) Cho đường thẳng (d): y = (m + 4)x - m + 6 (m là tham số)a) Tìm m để đường thẳng (d) đi qua điểm A(-1; 2).b) Vẽ đường thẳng (d) với giá trị tìm được của m ở câu a).c) Tìm m để đường thẳng (d) song song với đường thẳng y = -2x + 3.d) CMR: Khi m thay đổi thì đường thẳng (d)...
Đọc tiếp

Bài 1. 

a) 2 \sqrt{5}+\sqrt{(1-\sqrt{5})^{2}}

b) 2 \sqrt{2}+\sqrt{18}-\sqrt{32} \quad

c/ \frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2 \sqrt{3}

Bài 2: 

\mathrm{P}=\left(\frac{1}{\sqrt{\mathrm{x}}-1}-\frac{1}{\sqrt{\mathrm{x}}}\right):\left(\frac{\sqrt{\mathrm{x}}+1}{\sqrt{\mathrm{x}}-2}-\frac{\sqrt{\mathrm{x}}+2}{\sqrt{\mathrm{x}}-1}\right) Với \mathrm{x}>0 ; \mathrm{x} \neq 1 ; \mathrm{x} \neq 4)

a/ Rút gon \mathrm{P}.

b/ Với giá tri nào của x thì P có giá tri bằng \frac{1}{4}

c/ Tính giá tri của P tại x = 4 + 2 \sqrt{3}

Bài 3. (2 điểm) Cho đường thẳng (d): y = (m + 4)x - m + 6 (m là tham số)

a) Tìm m để đường thẳng (d) đi qua điểm A(-1; 2).

b) Vẽ đường thẳng (d) với giá trị tìm được của m ở câu a).

c) Tìm m để đường thẳng (d) song song với đường thẳng y = -2x + 3.

d) CMR: Khi m thay đổi thì đường thẳng (d) luôn đi qua một điểm cố định.

Bài 4. (4,5 điểm) Cho nửa (O), đường kính AB = 2R và dây AC = R.

a) Chứng minh rABC vuông

b) Giải rABC.

c) Gọi K là trung điểm của BC. Qua B vẽ tiếp tuyến Bx với (O), tiếp tuyến này cắt tia OK tại D. Chứng minh DC là tiếp tuyến của (O).

d) Tia OD cắt (O) ở M. Chứng minh OBMC là hình thoi.

e) Vẽ CH vuông góc với AB tại H và gọi I là trung điểm của CH. Tiếp tuyến tại A của (O) cắt tia BI tại E. Chứng minh E, C, D thẳng hàng.

0
9 tháng 11 2015

a) 11 = \(\sqrt{121}\)>\(\sqrt{99}\)

b) <

9 tháng 11 2015

Trần Nguyễn Hoàng Yến đúng koavt349845_60by60.jpg

25 tháng 8 2021

\(5x^2+24x+19=0\)

\(\Leftrightarrow5x^2+5x+19x+19=0\)

\(\Leftrightarrow5x\left(x+1\right)+19\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(5x+19\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\5x+19=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-\frac{19}{5}\end{cases}}\)

Vậy \(S=\left\{-1;-\frac{19}{5}\right\}\)

Tìm nghiệm của phương trình

 5x^2 + 24x + 19 = 0 

 5x^2 + 5x + 19x + 19 = 0 

5x(x+1 ) ( 5x + 19 ) = 0 

x + 1 = 0 

5x + 19 = 0 

x = -1 

x = -19/5 

vậy S = { -1 ; -19/5 }

NM
4 tháng 8 2021

a. \(\sqrt{4x}+\sqrt{x}=2\Leftrightarrow2\sqrt{x}+\sqrt{x}=2\Leftrightarrow3\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{3}\Leftrightarrow x=\frac{4}{9}\)

b. \(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=2\\x=-1\end{cases}}\\x\ge2\end{cases}}\Leftrightarrow x=2\)\(\sqrt{x^2-4}=\sqrt{x-2}\Leftrightarrow\hept{\begin{cases}x^2-4=x-2\\x-2\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x+1\right)=0\\x\ge2\end{cases}}\Leftrightarrow x=2\)

c.\(\sqrt{x^2-2x}+\sqrt{2x^2+4x}=2x\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x+2x^2+4x+2\sqrt{x^2-2x}.\sqrt{2x^2+4x}=4x^2\end{cases}}\)

\(\Rightarrow x^2-2x=2\sqrt{x^2-2x}.\sqrt{2x^2+4x}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-2x}=0\\\sqrt{x^2-2x}=2\sqrt{2x^2+4x}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\text{ hoặc }x=2\\x^2-2x=8x^2+16x\end{cases}\Leftrightarrow}\)hoặc x=0 hoặc x=2 hoặc x= -18/7

Kết hợp điều kiện ta có : \(x=0\text{ hoặc }x=2\)

d. Điều kiện \(x\ge3\) ta có :

\(\sqrt{x^2+2x-15}=\sqrt{x-3}+\sqrt{x^2-3x}\Leftrightarrow x^2+2x-15=x^2-2x-3+2\sqrt{x-3}\sqrt{x^2-3x}\)

\(\Leftrightarrow2x-6=\sqrt{x-3}.\sqrt{x^2-3x}\Leftrightarrow4\left(x-3\right)^2=\left(x-3\right)\left(x^2-3x\right)\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2024

Đề hiển thị lỗi. Bạn xem lại nhé. 

9 tháng 2 2021

a) Vì \(\left|A+B\right|\ge0\)và \(\left|A\right|+\left|B\right|\ge0\)

Bình phương 2 vế ta có:

\(\left|A+B\right|^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow A^2+2AB+B^2\le A^2+2\left|AB\right|+B^2\)

\(\Leftrightarrow2\left|AB\right|\ge2AB\)\(\Leftrightarrow\left|AB\right|\ge AB\)(1)

Theo tính chất của dấu giá trị tuyệt đối thì \(\left|AB\right|\ge AB\)

\(\Rightarrow\)(1) luôn đúng \(\Rightarrow\left|A+B\right|\le\left|A\right|+\left|B\right|\)( đpcm )

Dấu " = " xảy ra \(\Leftrightarrow AB\ge0\)

b) \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|x-3\right|=\left|x+2\right|+\left|3-x\right|\)

Áp dụng kết quả phần a ta có: 

\(M=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=\left|5\right|=5\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x+2\right)\left(3-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x+2\ge0\\3-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\Leftrightarrow-2\le x\le3\)

TH2: \(\hept{\begin{cases}x+2< 0\\3-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\)( vô lý )

Vậy \(minM=5\)\(\Leftrightarrow-2\le x\le3\)

9 tháng 2 2021

a) Do 2 vế của BĐT không âm nên ta có:

\(\left|A+B\right|\le\left|A\right|+\left|B\right|\Leftrightarrow\left|A+B\right|^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow A^2+B^2+2AB\le A^2+B^2+2\left|AB\right|\Leftrightarrow AB\le\left|AB\right|\) (LUÔN ĐÚNG)

Dấu '=' xảy ra <=> \(AB\ge0\)

DD
2 tháng 10 2021

Câu 31: 

Ta có: \(4=2x+xy\ge2\sqrt{2x.xy}=2\sqrt{2}\sqrt{A}\)

suy ra \(A\le\frac{4^2}{2^2.2}=2\).

Dấu \(=\)khi \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\).

DD
2 tháng 10 2021

Câu 10: 

ĐK: \(x\inℝ\).

Ta có: 

\(VT=\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

\(=\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+16}\)

\(=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\)

\(\ge\sqrt{4}+\sqrt{16}=2+4=6\).

Dấu \(=\)khi \(x+1=0\Leftrightarrow x=-1\).

\(VP=5-2x-x^2=6-\left(x^2+2x+1\right)=6-\left(x+1\right)^2\le6\)

Dấu \(=\)khi \(x+1=0\Leftrightarrow x=-1\).

Do đó nghiệm của phương trình đã cho là \(x=-1\).

13 tháng 2 2017

Áp dụng BDT Bunhiacopki, ta có

\(1^2\le\left(x+3y\right)^2\le\left(1^2+3^2\right)\left(X^2+Y^2\right)\)

\(\Rightarrow\)\(X^2+Y^2\)\(\ge\frac{1}{10}\).Dấu bằng xảy ra

                         \(\Leftrightarrow x=3y\)

                          \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{10}\\y=\frac{1}{10}\end{cases}}\)

21 tháng 7 2016

1)Nếu x-1 >= 0 thì x>=1

=>x2 – 3x + 2 + |x – 1| = 0

<=>x2-3x+2+x-1=0

<=>x2-2x+1=0

<=>(x-1)2=0

<=>x-1=0

<=>x=1

Vậy S={1}

21 tháng 7 2016

2 ) ĐKXĐ:

x(x-2)0

<=>x0 và x-20

<=>x0 và x2

\(\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}-\frac{2}{x\left(x-2\right)}=0\)

=>x(x+2)-(x-2)-2=0

<=>x2+2x-x+2-2=0

<=>x2+x=0

<=>x(x+1)=0

<=>x=0 (ko thỏa ĐKXĐ) hoặc x+1=0

<=>x=-1

Vậy S={-1}